Disk
Overview & Physical Layer

Reference: “Memory Systems: Cache, DRAM, Disk
Bruce Jacob, Spencer Ng, & David Wang
Today's material & any uncredited diagram came from chapters 16 & 17

1955: IBM RAMAC 305
Today: Hitachi MicroDrive

Importance & Speed

• Slowest form of on-line storage
 • but the most important
 » today: repository for the world's knowledge
 » what do you care about more?
 * losing your computer or your files

• 2 roles for disks
 • bottom rung of the virtual memory ladder
 » slower and cheaper/bit than DRAM
 » page fault ::= miss to disk
 • if it happens often – go to lunch
 • file system
 » reliability & security become priorities
 • financial data centers
 - duplicate everything
 - data in a particular location – the usual RAIDx approach
 - replicate locations such that
 - natural or human disaster doesn't get them all
Offline Storage

• Ignore it in what follows
• Removable disks
 • were an integral part of the computer center until the mid 70’s
 » mostly since disks didn’t hold enough data
 » and the sealed (a.k.a. Winchester) drives didn’t show up until 1973.
 • now they are reserved for PC backup and transport
 » e.g. USB or FireWire backup disks, thumb drives etc.
• Enterprise
 • several layers of backup
 » 1st layer is disk based (access: seconds)
 • most recent snap-shots
 » 2nd layer is tape (access: minutes – hours)
 • usually in the form of automated stackers
 » vault (access: days)
 • holds the tapes

Comments

• Focus today is on hard-drive disks (HDD)
 • for on-line storage in computer systems
• Note some disks aren’t really disks
 • Solid State Disk (SSD)
 » a disk interface to a pile of chips
 • today this is FLASH based
 • PCRAM, FeRAM, NRAM, ... possible future candidates
 » significantly faster than HDD’s but
 • more expensive
 • longevity issues
• Disks are pervasive in other digital gizmo’s
 • iPod, DVRs, video cameras
 » 1” & 1.8” form factors
CGR Better than Moore's Law

Interfaces & Improvement

- **Interfaces**
 - Control moves onto the disk
 - replaces motherboard control
 - now – microprocessor and SRAM inside the disk
 - Parallel to high speed serial interfaces
 - limited by short fat cable issues
 - serial Fiber Channel – 1997, SAS, SATA
 - serial enables storage area networks (NAS)

- **Key improvement contributors**
 - thinner magnetic platter coating
 - improvements in head design
 - lower flying height
 - accuracy of head positioning servo
 - hard to do cheaply
 - hence BPI CGR leads TPI CGR
Access

• A disk address
 • Indirectly resolved to
 » surface, radius, angle
 • polar coordinates resolve to cylinder & sector

• Performance
 • as always multiple metrics
 » latency ::= response time
 • since seek and rotational latency varies significantly
 • response time usually averaged over large number of accesses
 » bandwidth ::= transfer rate
 • transfer rate = IOPS*average block size
 - dependent on disk RPM and lineal density (BPI)
 • multiple requests queued in disk controller
 » hence response time looks exponential w/ increase in
 • throughput, request arrival rate, utilization
 • e.g. increased queueing delay
 » optimization possible be reordering requests

Workload Impact on Performance

• Numerous factors
 • block size – larger block \(\rightarrow \) longer transfer time
 • random vs. sequential access
 • footprint \(\rightarrow \) # seeks and rotational scope
 • read vs. write \(\rightarrow \) writes can be deferred
 • Q depth: deeper \(\rightarrow \) better optimization opportunity
 • command arrival rate
 » huge burst will increase Q occupancy time
 » and longer service time
Disk Futures

- Disk demise oft predicted
 - “greatly exaggerated” as Mark Twain said
- Horizontal to vertical transition underway
 - increased areal density should continue
- MAID might threaten tape for offline storage
 - massive array of idle disks
- Reduced form factor
 - may enable RAID
 - and server storage bricks may become available in PC’s
 - brick is a bunch of disks, controller, and battery
 - idea: even if power goes down disk writes complete
- Common saying
 - Silicon Valley misnomer
 - more money made due to FeO2 than Si

Disk Storage Layers

- Physical Layer
 - physics and engineering to just make disks work
- Data Layer
 - arrangement of data in blocks, sectors, stripes, ...
- Internal Control Layer
 - what the processor in the disk deals with
- Interface Layer
 - specifics of the drive interfaces
- Cache or External Control Layer
 - use of caches to improve performance
 - issues in management of multiple drives
 - RAS issues such as RAID
 - power issues such as MAID
 - huge issue for the datacenter
- 2 lectures won’t allow a deep dive into all of them
Physical Layer

• 3 major components
 • magnetic recording physics
 » ferromagnetic materials
 • magnetized by external field
 • stable after external field is removed
 • common elements: iron, nickel, cobalt
 • rare earth: gadolinium, dysprosium
 • rapidly quenched metal alloys form amorphous FM materials
 » electron spin creates a magnetic field
 • non-FM materials consist of electron pairs w/ opposite spins
 • FM materials
 - non-paired valence shells
 - long range atomic ordering (aligned in parallel) to form a domain
 » beware the Curie temperature
 • above which the FM material loses to thermal entropy
 • electromechanical and magnetic components
 • integrated electronics in the drive

Domains

• Bulk material
 • domains randomly aligned
 » until aligned under an external field
 » current induced fields – right hand rule
Magnetic Field properties

- **Measurements in MKS**
 - things you might have forgotten from ugrad physics

- **Field strength**
 - \(H \) in amps/meter

- **Dipole moment**
 - field strength density: \(M \) – also in amps/meter
 - \(M \) is essentially the level of magnetization

- **Flux density (a.k.a. magnetic induction)**
 - \(B \) in webers/m\(^2\)
 - \(B = \mu_0 \times H \)
 - where \(\mu_0 \) is free space permeability = \(4\pi \times 10^{-7} \)

H-M Hysteresis

- **Key to magnetic recording**
 - \(M \) is material state dependent

Axial Anisotropic: preferred axis horizontal (early) perpendicular (future)
Reading and Writing

• Write
 • current in write head provides field
 » driven by write channel electronics
 » ideally drive to Ms
 • highest signal to noise result since Mr separation is greatest
 » in practice it’s a suboptimal choice
 • high M compartment requires higher inter-bit separation
 • classic magnetic neighborhood problem
 • high H values on head requires more current (power)
 • and possibly more time

• Read
 • option 1: read the weak magnetic fields
 » data value based on polarity
 » problem – too hard to work in practice
 • option 2: sense field reversal (easier)
 » 1 = reversal, 0 = no reversal

• Required: balance read head sensitivity and write head capability
Recording Medium

• **Desireable properties**
 - thin (takes up less space)
 - light (less power to spin)
 - flat, smooth, rigid (low distortion allows head to fly lower)
 - High Hc (stable Mr under high areal density)
 - High Mr (improved signal to noise ratio)
 - tall thin rectangular hysteresis loop (not found in practice)
 - max +Mr/Mr separation
 - smaller H currents for write efficiency

• **Substrate**
 - traditionally aluminum
 - now plated with electroless nickel-phosphorus
 - polished to a smoother finish
 - now small form factor allows glass to be used
 - more expensive but finer polish possible

Magnetic Layer

• **1st 25 years**
 - particulate media
 - magnetic particles in organic binder solution
 - painted on spinning platter
 - high rpm creates relatively uniform coating
 - bake in oven to bind and then polish
 - magnetic material
 - gamma ferric oxide
 - later: cobalt modified FeO, CrO, BaO₂
 - typically used for flexible media since they are less brittle
 - HDD now – use thin film
 - sputtered magnetic material
 - Ar plasma bonds material directly into substrate
 - magnetic material not diluted by binder → higher areal density
 - extremely uniform coating
Platter Cross Section

NIP – harder surface than Al-Mg

Cr – aids magnetic layer properties and bonding

Magnetic layer – Cr increases coercivity and squareness, grain size influenced by process – e.g. temp and rate of deposition

C overcoat – very thin hermetic seal to prevent rust

Lubricant – super thin, reduce wear between head and disk

Spindle Motor

• Today w/ high areal density
 » DC 3-phase 8-pole motors are common
 » spindle integrated into motor
 » platter attached to spindle

• Ideal motor properties
 » reliable over years and thousands of start/stop cycles
 » low vibration – so head doesn’t impact surface
 » minimal wobble – improves track registration
 » low noise – customer appeal
 » high shock tolerance – particularly for mobile
 • issue for non-motor components as well

• Bearings are a big deal – see all of the above
 » ball bearings now replaced with FDB’s
 » fluid dynamic bearings)
 • high viscosity oil trapped in special sleeve
 – 10x improvement in wobble, 4db improvement in noise
 – better damping & reliability; larger contact surface
Write Heads

- Inductive ring based head
 - electromagnet with a gap (no change over time)
 - flux “leak” through gap passes through the recording medium
 - desirable characteristics (improved significantly)
 - narrow (maximizes tpi)
 - high flux density core (maximizes M)
 - low inductance electronics (increases reversal speed – max bpi)
 - strong – reduces contact damage
 - light – easier to fly and move
Read Heads

• **Significant changes have occurred**
 - beginning – used same inductive head as for write
 - field change induces a current in the coil
 - MR (magneto resistive) heads sense flux directly
 - MR materials change resistance
 - function of angle between M and applied current flow
 - $\Delta R = C_{MR} \times R \times \cos^2 \theta$
 - permalloy is one such material
 - $C_{MR} = .002 - .003$
 - magnetically soft, 20% iron, 80% nickel
 - constant current applied to sensor
 - voltage change sensed: $\Delta V = I \times \Delta R$ (Ohm’s Law)

Read Head Issues

• **Clock recovery**
 - since 1’s occur with transitions
 - there must be enough of them to recover the clock
 - hence encoding required
 - **Highest ΔR**
 - occurs during the transition
 - hence bias Θ to be 45 degrees for $H_{external} = 0$
 - 101 read waveform

• MR heads drove big areal density increase starting in 1991
Giant MR (GMR) Heads Next

- **Composite design**
 - made possible by molecular beam epitaxy
 - allows a free and pinned magnetic layer
 - increases the resistance change
 - due to difference in field referenced to the pinned layer
 - result is another increase in areal density

- **AFC Media**
 - IBM introduced in 2001
 - quadruples areal density w/ pixie dust sandwich
 - 3 atoms thing Ruthenium layer between 2 magnetic layers
 - allows thicker material to appear thinner than it really is
 - circumvent the widely held “superparamagnetic” effect
 - beyond 20-40 Gb/in² domains are too small to hold their field polarity
 - layers contain opposing polarities
 - result 100 Gb/in² (and beyond claims IBM)
 - source: IBM

[Video](http://www.research.ibm.com/research/demos/gmr/1.swf)
Other Issues

• MR & GMR → separate read and write heads
 • each can be separately optimized
 » placed in tandem
 • write wide read narrow is an option
 » less sensitive to seek position
 • guard bands between tracks
 » required to prevent fringe field writes affecting adjacent tracks

Flying Heads & Head Stack Assembly
Rotary vs. Linear Actuators

- **Rotary better**
 - If twist amount of pivot is accurate enough
 - For any track the head is tangential
 » Best signal/noise response of the read head

Single vs. Multiple Platters

- **Multiple platters improve capacity**
 - Good idea when areal density was poor
 - Problems:
 » Large % of power due to wind resistance
 - α RPM and therefore bandwidth
 » Weight of multiple arms \rightarrow more powerful VCM
- **Similar issue for larger platter diameter**
 - Wind resistance α area
 - Increases seek stroke
- **Multiple platters better than bigger form factor**
 - Due to power concerns
 - But single platter disks tend to be the winner
Start/Stop

• 2 approaches
 • contact start/stop (CSS)
 » let head contact platter surface as RPM's slow
 » air bearing for flying head disappears
 » with today's high areal density
 » not a good idea
 • load/unload
 » park head on a ramp before reducing RPM
 » loading zone overlap matched to flying height

Electronics

• Small PCB inside
 • Controller
 » receive commands, schedule, and report back when command executes
 » manage the disk cache
 » interface with HDA – e.g. seek and sector targets
 » error recovery and fault management
 » power management
 » start/stop control
Controller Components

- **ROM**
 - holds code for the \(\mu P\)
- **Memory controller**
 - w/ larger caches SRAM moved to DRAM
 - simple DRAM controller & cache/write_buffer manager
- **Host Interface**
 - protocol specific: FC, SATA, etc.
- **Data Formatter**
 - move data from memory and partition into sector sized chunks
- **ECC/CRC**
 - usual BUT
 - areal density improvement if bit compartments are allowed to be a little flakey

Controller Illustrated
Memory

• 3 distinct roles
 • scratch-pad
 » on power up
 • load protected data from platter
 » defect maps
 » ID tables
 » adaptive operational parameters
 » queue of commands
 • speed matching
 » interface and disk bandwidths and timing differ
 • cache
 » read pages
 » write buffer

Write Channel

• Several duties
 • limit run length of 0’s
 » no transitions for too long ruins clock recovery
 » several modulation codes possible
 • obvious 2 bits/logical bit (50% efficient)
 • need to consider ISI (inter-symbol interference)
 » mitigated by write precompensation
Read Channel

- **GMR yields < 1mv ΔV**
 - differential preamp located in the AEM
 - then AGC (auto gain control)
 - low pass filter to reduce high-freq noise
- **Detection, clock recovery, & decode**

And Finally

- **Motor controls**
 - simple ADC/DAC
 - but with adaptive correction
 - for positioning drift & thermal issues