DRAM
Overview & Devices

Reference: "Memory Systems: Cache, DRAM, Disk
Bruce Jacob, Spencer Ng, & David Wang
Today's material & any uncredited diagram came from chapters 7 & 8

Intended CS7810 Plan

• 5 weeks on memory systems
 • 3 weeks on DRAM
 » overview & devices
 » system signalling
 » system organization & access protocols
 » DRAM memory controllers
 » FBDIMM and BoB approaches
 » memory system design Analysis
 • 1 week on disk
 » physical and data layers
 » design trade-offs, interfaces, & futures
• 1 week on NVRAM or URAM new technologies
 » got moved up to the first week
 • FLASH - the current dominant technology
 • NVRAM/URAM options on the horizon
Memory & Storage are Different

• Memory hierarchy (7810 focus now)
 ▪ multiple levels of cache
 ▪ main memory
 » for now it’s DRAM
 ▪ disk

• Storage (additional component next year?)
 ▪ logical view: file system and backups
 ▪ physical view: disks & tape for now
 ▪ operational view: huge complexity
 » reliability, availability, serviceability (a.k.a. RAS)
 » migration issues, cabling, cooling & power, interconnect
 » today's datacenters often have more processors in the storage subsystem than in the compute subsystem

• What should Google care more about: storage or compute?
 ▪ food for thought

Key Item to Remember

• It is easy to predict SRAM behavior
 ▪ even though discrete DRAM may well disappear in this decade
 » since cache buses (BSBs) are almost extinct now

• Hard to predict DRAM behavior
 ▪ probabilistic resource availability
 ▪ performance depends on controller and device model
 » small controller differences show up as big performance differences

• Disk performance is probabilistic as well

• Plus
 ▪ lots of intermediate buffers, prefetch, ... issues as well
Typical PC

Orthogonal address to save pins & cost

Simplified DRAM

Sense amps now combined with row buffer
It’s All about Mats

- DRAM devices come in several flavors
 - interface & speed: we’ll deal with these later
 - width
 - x4 & x8 are highest density die
 - used in price sensitive applications like PC’s
 - x16 & x32
 - higher per bit cost used in high performance systems
- DRAM chip = lot’s of memory arrays (mats)
 - mats operate under several regimes
 - unison
 - each access targets one bit/mat
 - x4 accesses 4 mats
 - independent
 - mats organized as subsets to create banks
 - concurrent bank access is the idea
 - intra-bank mats operate in unison
 - interleaved banks

Mat & Width Organization
Slow Mat Problem

- Mat access is slow
 - high-C word and bit lines
 » bigger = slower
 » C for wire is linear in length at same width
 » Cgate is linear with size of row or column in the mat
- Interleave to speed up
 - mid-60’s hack used on IBM 360/91 and Seymour’s CDC 6600
 » essentially a form of pipelining
 - If interface is n times faster than mat latency interleave n banks
 » should be able to make things arbitrarily fast
 » in theory yes - in practice no
 - constraints: jitter, signal integrity, power
 - multiple on-die banks
 » may be internally or externally controlled

Ranks & Banks vs. DRAMs & DIMMs
JEDEC Interface

address width depends on DRAM capacity
control: RAS, CAS, Oenable, CLKenable, etc.

Chip select goes to every DRAM in a rank
Separate select per rank - 2 per DIMM common

64 bits typical wider in high-end systems

See any problems on the horizon with this model?

Memory Controller Issues

- **DRAM control is tricky**
 - CPU prioritizes memory accesses
 - transaction requests send to Mem_Ctl
 - Mem_Ctl
 - translates transaction into the appropriately timed command sequence
 - transactions are different
 - open bank then it's just a CAS
 - no open bank then Activate, PRE, RAS, CAS
 - wrong open bank then write-back and then ACT, PRE, RAS, CAS
 - lots of timing issues
 - result: latency varies
 - often the command sequence can be stalled or even restarted
 - refresh controller always wins
 - now moving onto the CPU die
 - multi-core and multi-mem_ctl involves a lot of issues
DRAM Evolution

- **Not that important**
 - naming conventions vary by vendor to some extent
 » Clocked - treat DRAM as a really slow SRAM
 » Asynch DRAM - access and wait
 - still clocked but the timing provided by the command lines
 » Fast Page Mode
 - add latches to the sense amps to form row buffer
 » EDO
 - add latches to output drivers so data stays valid
 » P/BEDO
 - add counter to cycle through successive width sized nibbles
 - SDRAM - mid 90's - the bulk of the action now
 » clock now controls row select circuits as well
 » DDRx variants still SDRAM just higher bandwidth

Simple SDRAM Timing

Note: pipelining possibilities
DRAM Conundrum

• Cost/bit vs. Latency
 • widening memory gap
 » CPUs faster by 58%/yr
 » DRAM faster by 7%/yr - now going even flatter
 » multi-core makes this problem much worse
 • current industry trend
 » minimize cost through density improvements
 » so we’re stuck with long latency
• Focus on improving throughput
 • enter DDRx and Rambus

RDRAM Throughput Idea

• System interface solution rather than a fundamental technology
 • narrow, split request-response bus
 » addr, data, ctl, selects all mux’d on the same bus
 » uses the DDR model
 » initially 1 byte wide and ran at 250 MHz
 • limited concurrency so redesigned ==> concurrent RDRAM
 » C-RDRAM
 • looks a lot more like a JEDEC interface now
 • simplifies transaction scheduling
 • shares a row buffer between adjacent banks
 - limits open bank options but saves on cost

![Diagram](image)
Evolving RDRAM

- Widen data & address + pump up the clock

C-RDRAM

Other RAMBUS Wrinkles

- Packaging
 - pins on one side of die so chips can be inserted rather than just DIMMs
 - not clear if anyone bought into this
- Interesting dual clock timing model in the patent
 - usage is still TBD
- Variable request response latency
 - Mem_Ctl can specify
 - usage: variable packet sizes & higher utilization of the narrow bus
Mainstream Throughput Idea: DDRx

- **Use both clock edges**
 - DDR transfers 2 bits per cycle per lane
 - DDR2 transfers 4
 - DDRn transfers 2^n
 - signal integrity and power limit clock speeds
 - particularly on long FR4 wire traces
- **Also add source synchronous clocking - enter DQS**
 - timing variance creates synchronization issues
 - DDR device uses DLL/PLL to synch with Mem_Ctl master clock
 - note skew depends on where the DIMM sits in the chain
 - need to latch in the center of the data “eye”
 - other sources of timing uncertainty
 - manufacturing variation, temperature, Miller side-wall effect, trace length
 - delay proportional to RC
 - power proportional to CV^2

Optimizing for Latency

- **Virtual channel memory (VCDRAM)**
 - add SRAM cache for segments
 - manage by mem_ctlr
 - adds prefetch and restore commands to the mix
 - latency better if cache hit - worse on a miss

- **Enhanced SDRAM (ESDRAM)**
 - put latch before column mux rather than after as in EDO
 - expensive since it’s a row wide rather than a column wide
 - allows
 - overlap of row precharge without closing existing row
 - allows a write-around option which may be useful in write-back cache models
Optimizing for Latency (cont’d)

• MoSys 1T-SRAM (current low latency winner)
 • catchy name but it’s still 1T+1C
 • wraps SRAM interface around DRAM core
 • large number of small independent banks => lower latency
 » increased control circuitry => reduced density => increased cost
 • niche market in game systems
• Reduced Latency DRAM (RLDRAM)
 • has no DIMM specification
 • SRAM like interface Raddr and Caddr on different pins
• Fast Cycle DRAM (FCRAM)
 • breaks row into subarrays - smaller is faster
 • moves some Caddr bits to Raddr
 » does have a DIMM spec
 » faster clock and higher bandwidth - obvious limits on the horizon

Disturbing Trend

• DIMM capacity going up
 • process improvements yield more bits/die
• DRAM channel speed going up
 • DDRn
• # of DIMMs per channel going DOWN!!
 • SDR - 8 DIMMs/channel
 • DDR - 4 DIMMs/channel
 • DDR2 - 2 DIMMs/channel
 • DDR3 - 1 DIMM/channel and higher latency
 » isn’t this a lower bound?
 » adding channels is expensive in CPU pins
 • remember mem_ctl is on chip now and for good reason
• Why?
 » stub electronics problem on a JEDEC broadcast bus
 » gets worse if bus speed increases - it’s the di/dt thing
• Problem essence
 » not enough memory capacity per socket
 » huge server problem today
Intel’s FB-DIMM Compromise

Traditional (JEDEC) Organization
Graphics-Card Organization
Fully Buffered DIMM Organization

- Move to point to point signalling and add an ASIC
 - AGP already uses this tactic to run higher bus speeds

FB-Dimm Problems?

- There are many
 - daisy chain causes varied response time
 - bit lane retiming additional latency problem
- Already considered a 1-trick pony
- Enter BoB - Buffer on Board - the new Intel hack
 - use a tree rather than a daisy chain for 4x DDR3
 - BoB placement
 - motherboard or on a memory card riser
 - problem - another buffer stage in the memory hierarchy
 - OK if prefetch strategy is working for you
- AMD has/had? a similar variant
 - Socket 3 Memory Extender (G3MX) micro-buffer
 - effort now seems to have been cancelled
DRAM Systems Issues 1

- **Architecture and scaling**
 - DDRn causes 2^n prefetching
 - I/O side faster but mat side is wider
 - Implies wider cache lines
 - We know the issues involved
 - Timing fundamentally limited by signal integrity issues
 - Lots can be done here but impact is cost/bit increase

- **Pins vs. protocol**
 - Pin count has large cost adder
 - Use them more efficiently \Rightarrow protocol change
 - JEDEC moves slowly

DRAM Systems Issues 2

- **Power and heat**
 - The biggest concern now and in the future most likely
 - Early DIMMs consumed about 1W
 - FB-DIMMs now at 10W

- **Servers**
 - Goal
 - 3x more channels and 6x more DIMMs per channel
 - Looks like 250 W per socket just for memory
 - Huge problem now
 - Definite time for a rethink
 - Problem
 - Industry momentum
 - Standards
 - DRAM commodity \Rightarrow super low margins
 - Rethinking is a costly proposition
Slight Change of Focus

• Very brief device technology overview
 • background for what comes later
• Key issues
 • leaky devices
 • process differences
 • refresh requirements
 • how to build that pesky capacitor

64 Mbit FPM DRAM (4096x1024x16)
DRAM Cell

Logical View

Trench implementation now primarily used in eDRAM

stacked implementation mainstream DRAM processes

Leakage & Refresh

• Transistors are not ideal switches
 • leakage currents in DRAM processes are minimized
 » but not to 0
 • leakage currents increase as Tsize goes down
 » tricky balance of Vth, Vdd, and process
 » additional increase with temperature
 • industry target - refresh every 32 - 64 ms
Folded vs. Open Bit-Line

Folded: \(8F^2\) - 2 bit line per cell

6\(F^2\) version shipped by Micron using MIM (metal insulator metal C) in 2004

Open: \(6F^2\) - 1 bit line per cell

Issues

- **Open**
 - requires dummy array segments at mat edge
 - balance C characteristics of bit-line pairs
 - more noise susceptibility
 - combine to dilute the cell size advantage

- **Folded**
 - differential sense amps have better common-mode noise rejection properties
 - e.g. alpha particle or neutron spike shows up on both sides
 - current industry focus
 - new folding strategies show up regularly in circuits venues
Sense Amps

- Small stored charge requires high sensitive amps
 - use differential model
 - reference voltage precharged to half-way mark
 - then look at which way the charge goes to determine value
 - noise margins must exist and trick is to keep them small
 - problematic as devices shrink

- Roles
 - 1: basic sense value
 - 2: restore due to the destructive read
 - 2 variants in play
 - restore instantly or restore on row close
 - 3: act as a temporary storage element (row buffer)
 - how temporary depends on restore choice

Sense Amp Operation

- Diagram showing various stages of sense amp operation.
Decoders & Redundancy

- Defects occur and yields have to be high
 - rules of a low margin business
- Redundant rows, columns, and decoders
 - fuses are used to isolate defective components
 - appearance is of a fully functional mat
 - fuse set
 » burn in, test and then fuse set
Packaging, Performance, Cost

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>process (nm)</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>CPU pin count</td>
<td>2263</td>
<td>3012</td>
<td>4009</td>
<td>5335</td>
<td>7100</td>
</tr>
<tr>
<td>cents/pin</td>
<td>1.88</td>
<td>1.61</td>
<td>1.68</td>
<td>1.44</td>
<td>1.22</td>
</tr>
</tbody>
</table>

| DRAM pin count | 48-160 | 48-160 | 62-208 | 81-270 | 105-351 |
| cents/pin | 0.34-1.39 | 0.27-0.84 | 0.22-0.34 | 0.19-0.39 | 0.19-0.33 |

Pressure runs wild!!

DRAM vs. Logic Process
Hybrid Processes Coming

- IBM was the pioneer
 - start with logic process
 - add extra layers to create high-C DRAM cells
 » multiple oxide thicknesses
 » fast leaky transistors
 » slow less-leaky transistors
 » enables eDRAM
 » also helps with power issues
 » leakage is a big deal
 » only use fast transistors on the critical CPU path
 » use slow T's for non-critical path and memory blocks
- Current usage in transition
 - from high-performance SoC's to mainstream CPU