DRAM
Overview & Devices

Reference: “Memory Systems: Cache, DRAM, Disk
Bruce Jacob, Spencer Ng, & David Wang
Today's material & any uncredited diagram came from chapters 7 & 8

Intended CS7810 Plan

• 5 weeks on memory systems
 • 3 weeks on DRAM
 » overview & devices
 » system signalling
 » system organization & access protocols
 » DRAM memory controllers
 » FBDIMM and BoB approaches
 » memory system design Analysis
 • 1 week on disk
 » physical and data layers
 » design trade-offs, interfaces, & futures
 • 1 week on NVRAM or URAM new technologies
 » got moved up to the first week
 • FLASH - the current dominant technology
 • NVRAM/URAM options on the horizon
Memory & Storage are Different

- Memory hierarchy (7810 focus now)
 - multiple levels of cache
 - main memory
 - for now it's DRAM
 - disk
- Storage (additional component next year?)
 - logical view: file system and backups
 - physical view: disks & tape for now
 - operational view: huge complexity
 - reliability, availability, serviceability (a.k.a. RAS)
 - migration issues, cabling, cooling & power, interconnect
 - today's datacenters often have more processors in the storage subsystem than in the compute subsystem

- What should Google care more about: storage or compute?
 - food for thought

Key Item to Remember

- It is easy to predict SRAM behavior
 - even though discrete DRAM may well disappear in this decade
 - since cache buses (BSBs) are almost extinct now
- Hard to predict DRAM behavior
 - probabilistic resource availability
 - performance depends on controller and device model
 - small controller differences show up as big performance differences
- Disk performance is probabilistic as well
- Plus
 - lots of intermediate buffers, prefetch, ... issues as well
Typical PC

![Diagram of a Typical PC]

Simplified DRAM

Orthogonal address to save pins & cost

Sense amps now combined with row buffer
It's All about Mats

- DRAM devices come in several flavors
 - interface & speed: we'll deal with these later
 - width
 - x4 & x8 are highest density die
 - used in price sensitive applications like PC's
 - x16 & x32
 - higher per bit cost used in high performance systems
- DRAM chip = lot's of memory arrays (mats)
 - mats operate under several regimes
 - unison
 - each access targets one bit/mat
 - x4 accesses 4 mats
 - independent
 - mats organized as subsets to create banks
 - concurrent bank access is the idea
 - intra-bank mats operate in unison
 - interleaved banks

Mat & Width Organization

- x2 DRAM
- x4 DRAM
- x8 DRAM
Slow Mat Problem

- Mat access is slow
 - high-C word and bit lines
 » bigger = slower
 - C for wire is linear in length at same width
 - Cgate is linear with size of row or column in the mat
- Interleave to speed up
 - mid-60's hack used on IBM 360/91 and Seymour's CDC 6600
 » essentially a form of pipelining
 - if interface is n times faster than mat latency interleave n banks
 » should be able to make things arbitrarily fast
 - In theory yes - in practice no
 - constraints: jitter, signal integrity, power
 - multiple on-die banks
 » may be internally or externally controlled

Ranks & Banks vs. DRAMs & DIMMs

- One DRAM with eight internal RANKs, each of which connects to the shared I/O bus
- One DRAM bank is comprised of potentially many DIMM ARRAYS, depending on the ports configuration
- This example shows 4 arrays, indicating a 4-port
JEDEC Interface

address width depends on DRAM capacity
control: RAS, CAS, Oenable, CLKenable, etc.

Chip select goes to every DRAM in a rank
Separate select per rank - 2 per DIMM common
64 bits typical
wider in high-end systems

See any problems on the horizon with this model?

Memory Controller Issues

• DRAM control is tricky
 • CPU prioritizes memory accesses
 » transaction requests send to Mem_Ctl
 • Mem_Ctl
 » translates transaction into the appropriately timed command sequence
 • transactions are different
 - open bank then it’s just a CAS
 - no open bank then Activate, PRE, RAS, CAS
 - wrong open bank then write-back and then ACT, PRE, RAS, CAS
 - lots of timing issues
 • result: latency varies
 - often the command sequence can be stalled or even restarted
 - refresh controller always wins
 » now moving onto the CPU die
 • multi-core and multi-mem_ctl involves a lot of issues
DRAM Evolution

- Not that important
 - naming conventions vary by vendor to some extent
 - Clocked - treat DRAM as a really slow SRAM
 - Asynch DRAM - access and wait
 - still clocked but the timing provided by the command lines
 - Fast Page Mode
 - add latches to the sense amps to form row buffer
 - EDO
 - add latches to output drivers so data stays valid
 - P/BEDO
 - add counter to cycle through successive width sized nibbles
 - SDRAM - mid 90's - the bulk of the action now
 - clock now controls row select circuits as well
 - DDRx variants still SDRAM just higher bandwidth

Simple SDRAM Timing

Note: pipelining possibilities
DRAM Conundrum

- **Cost/bit vs. Latency**
 - **widening memory gap**
 - CPUs faster by 58%/yr
 - DRAM faster by 7%/yr - now going even flatter
 - multi-core makes this problem much worse
 - **current industry trend**
 - minimize cost through density improvements
 - so we’re stuck with long latency
- **Focus on improving throughput**
 - enter DDRx and Rambus

RDRAM Throughput Idea

- **System interface solution rather than a fundamental technology**
 - **narrow, split request-response bus**
 - addr, data, ctl, selects all mux’d on the same bus
 - uses the DDR model
 - initially 1 byte wide and ran at 250 MHz
 - limited concurrency so redesigned => concurrent RDRAM
 - **C-RDRAM**
 - looks a lot more like a JEDEC interface now
 - simplifies transaction scheduling
 - shares a row buffer between adjacent banks
 - limits open bank options but saves on cost
Evolving RDRAM

- Widen data & address + pump up the clock

C-RDRAM

Direct RDRAM

Other RAMBUS Wrinkles

- Packaging
 - pins on one side of die so chips can be inserted rather than just DIMMs
 » not clear if anyone bought into this

- Interesting dual clock timing model in the patent
 - usage is still TBD

- Variable request response latency
 - Mem_Ctl can specify
 - usage: variable packet sizes & higher utilization of the narrow bus
Mainstream Throughput Idea: DDRx

- **Use both clock edges**
 - DDR transfers 2 bits per cycle per lane
 - DDR2 transfers 4
 - DDRn transfers 2^n
 - signal integrity and power limit clock speeds
 - particularly on long FR4 wire traces
- **Also add source synchronous clocking - enter DQS**
 - timing variance creates synchronization issues
 - DDR device uses DLL/PLL to synch with MemCtl master clock
 - note skew depends on where the DIMM sits in the chain
 - need to latch in the center of the data "eye"
 - other sources of timing uncertainty
 - manufacturing variation, temperature, Miller side-wall effect, trace length
 - delay proportional to RC
 - power proportional to CV^2

Optimizing for Latency

- **Virtual channel memory (VCDRAM)**
 - add SRAM cache for segments
 - manage by mem_ctlr
 - adds prefetch and restore commands to the mix
 - latency better if cache hit - worse on a miss
- **Enhanced SDRAM (ESDRAM)**
 - put latch before column mux rather than after as in EDO
 - expensive since it’s a row wide rather than a column wide
 - allows
 - overlap of row precharge without closing existing row
 - allows a write-around option which may be useful in write-back cache models
Optimizing for Latency (cont’d)

- **MoSys 1T-SRAM (current low latency winner)**
 - catchy name but it’s still 1T+1C
 - wraps SRAM interface around DRAM core
 - large number of small independent banks ==> lower latency
 - increased control circuitry ==> reduced density ==> increased cost
 - niche market in game systems
- **Reduced Latency DRAM (RLDRAM)**
 - has no DIMM specification
 - SRAM like Interface Raddr and Caddr on different pins
- **Fast Cycle DRAM (FCRAM)**
 - breaks row into subarrays - smaller is faster
 - moves some Caddr bits to Raddr
 - does have a DIMM spec
 - faster clock and higher bandwidth - obvious limits on the horizon

Disturbing Trend

- **DIMM capacity going up**
 - process improvements yield more bits/die
- **DRAM channel speed going up**
 - DDRn
- **# of DIMMs per channel going DOWN!!**
 - SDR - 8 DIMMs/channel
 - DDR - 4 DIMMs/channel
 - DDR2 - 2 DIMMs/channel
 - DDR3 - 1 DIMM/channel and higher latency
 - isn’t this a lower bound?
 - adding channels is expensive in CPU pins
 - remember mem_off is on chip now and for good reason
- **Why?**
 - stub electronics problem on a JEDEC broadcast bus
 - gets worse if bus speed increases - it’s the di/dt thing
- **Problem essence**
 - not enough memory capacity per socket
 - huge server problem today
Intel’s FB-DIMM Compromise

Traditional (JEDEC) Organization

Graphics-Card Organization

Fully Buffered DIMM Organization

FB-Dimm Problems?

- There are many
 - daisy chain causes varied response time
 - bit lane retiming additional latency problem
- Already considered a 1-trick pony
- Enter BoB - Buffer on Board - the new Intel hack
 - use a tree rather than a daisy chain for 4x DDR3
 - BoB placement
 » motherboard or on a memory card riser
 - problem - another buffer stage in the memory hierarchy
 » OK if prefetch strategy is working for you
- AMD has/had a similar variant
 - Socket 3 Memory Extender (G3MX) micro-buffer
 » effort now seems to have been cancelled
DRAM Systems Issues 1

• Architecture and scaling
 • DDRn causes 2^n prefetching
 » I/O side faster but mat side is wider
 » implies wider cache lines
 • we know the issues involved
 • Timing fundamentally limited by signal integrity issues
 » lots can be done here but impact is cost/bit increase
• Pins vs. protocol
 • pin count has large cost adder
 • use them more efficiently ==> protocol change
 » JEDEC moves slowly

DRAM Systems Issues 2

• Power and Heat
 • the biggest concern now and in the future most likely
 » early DIMMs consumed about 1W
 » FB-DIMMs now at 10W
• Servers
 • goal
 » 3x more channels and 8x more DIMMs per channel
 • looks like 250 W per socket just for memory
 » huge problem now
 • definite time for a rethink
 » problem
 • industry momentum
 • standards
 • DRAM commodity ==> super low margins
 » rethinking is a costly proposition
Slight Change of Focus

- Very brief device technology overview
 - background for what comes later
- Key issues
 - leaky devices
 - process differences
 - refresh requirements
 - how to build that pesky capacitor

64 Mbit FPM DRAM (4096x1024x16)
DRAM Cell

- **Logical View**
- **Trench implementation**
 - now primarily used in eDRAM

- **Stacked implementation**
 - mainstream DRAM processes

Leakage & Refresh

- Transistors are not ideal switches
 - leakage currents in DRAM processes are minimized
 - but not to 0
 - leakage currents increase as Tsize goes down
 - tricky balance of Vth, Vdd, and process
 - additional increase with temperature
 - industry target - refresh every 32 - 64 ms
Folded vs. Open Bit-Line

Folded: $8F^2$ - 2 bit line per cell
6F2 version shipped by Micron using MIM (metal insulator metal C) in 2004

Open: $6F^2$ - 1 bit line per cell

Issues

• Open
 • requires dummy array segments at mat edge
 » balance C characteristics of bit-line pairs
 • more noise susceptibility
 • combine to dilute the cell size advantage

• Folded
 • differential sense amps have better common-mode noise rejection properties
 » e.g. alpha particle or neutron spike shows up on both sides
 • current industry focus
 » new folding strategies show up regularly in circuits venues
Sense Amps

- Small stored charge requires high sensitive amps
 - use differential model
 - reference voltage precharged to half-way mark
 - then look at which way the charge goes to determine value
 - noise margins must exist and trick is to keep them small
 - problematic as devices shrink
 - Roles
 - 1: basic sense value
 - 2: restore due to the destructive read
 - 2 variants in play
 - restore instantly or restore on row close
 - 3: act as a temporary storage element (row buffer)
 - how temporary depends on restore choice

Sense Amp Operation
Decoders & Redundancy

- Defects occur and yields have to be high
 - rules of a low margin business
- Redundant rows, columns, and decoders
 - fuses are used to isolate defective components
 - appearance is of a fully functional mat
 - fuse set
 - burn in, test and then fuse set
Packaging, Performance, Cost

![Package Options](image)

(more pins, higher data rate, higher cost)

<table>
<thead>
<tr>
<th>ITRS Year</th>
<th>Process (nm)</th>
<th>CPU Pin Count</th>
<th>Cent/Pin</th>
<th>DRAM Pin Count</th>
<th>Cent/Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>90</td>
<td>2263</td>
<td>1.88</td>
<td>48-160</td>
<td>0.34-1.39</td>
</tr>
<tr>
<td>2004</td>
<td>65</td>
<td>3012</td>
<td>1.61</td>
<td>48-160</td>
<td>0.27-0.84</td>
</tr>
<tr>
<td>2007</td>
<td>45</td>
<td>4009</td>
<td>1.68</td>
<td>82-208</td>
<td>0.22-0.34</td>
</tr>
<tr>
<td>2010</td>
<td>32</td>
<td>5335</td>
<td>1.44</td>
<td>81-270</td>
<td>0.19-0.39</td>
</tr>
<tr>
<td>2013</td>
<td>22</td>
<td>7100</td>
<td>1.22</td>
<td>105-351</td>
<td>0.19-0.33</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure runs wild!!

DRAM vs. Logic Process

![Process Comparison](image)
Hybrid Processes Coming

• **IBM was the pioneer**
 * start with logic process
 * add extra layers to create high-C DRAM cells
 » multiple oxide thicknesses
 * fast leaky transistors
 * slow less-leaky transistors
 » enables eDRAM
 » also helps with power issues
 * leakage is a big deal
 * only use fast transistors on the critical CPU path
 * use slow T’s for non-critical path and memory blocks

• **Current usage in transition**
 * from high-performance SoC’s to mainstream CPU
 » issues do become more tricky as feature size shrinks
 » but power is the nemesis so you do what you have to