The Problem

• Multi-drop busses don't scale well
 • demand for higher memory bandwidth continues
 • traditional memory architecture scaling
 » can happen in speed or capacity but not both
 » market expectation
 • more for the same price
 • OR more for less

• Intel’s idea but solution is a common one
 • replace with point to point signaling
 » mitigates signal integrity problem
 » introduces the multi-hop problem

• Short story
 • already has proven to be problematic
 • Intel now moving to BoB (Buffer on Board)
 » essentially a multi-spigot FB Dimm idea
ITRS Comparison Humor

2001 ITRS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU GHz</td>
<td>90</td>
<td>45</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Memory T/CM</td>
<td>77.3</td>
<td>154.3</td>
<td>309</td>
<td>617</td>
<td>1235</td>
</tr>
<tr>
<td>Hperf pin ct.</td>
<td>226</td>
<td>601</td>
<td>4009</td>
<td>5335</td>
<td>7160</td>
</tr>
<tr>
<td>HP cents/pin</td>
<td>1.89</td>
<td>1.54</td>
<td>1.68</td>
<td>1.34</td>
<td>1.27</td>
</tr>
<tr>
<td>Mem pin ct.</td>
<td>24-100</td>
<td>48-160</td>
<td>62-256</td>
<td>81-179</td>
<td>195-321</td>
</tr>
<tr>
<td>CPU cost/pkg</td>
<td>2.644</td>
<td>45.493</td>
<td>67.059</td>
<td>123.5</td>
<td>123.5</td>
</tr>
<tr>
<td>Min Mem cost/pkg</td>
<td>0.1632</td>
<td>0.1296</td>
<td>0.1364</td>
<td>0.1939</td>
<td>0.1995</td>
</tr>
</tbody>
</table>

2008 ITRS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU GHz</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>9.1</td>
</tr>
<tr>
<td>Memory T/CM</td>
<td>154</td>
<td>80</td>
<td>617</td>
<td>1235</td>
</tr>
<tr>
<td>Hperf pin ct.</td>
<td>226</td>
<td>601</td>
<td>4009</td>
<td>5335</td>
</tr>
<tr>
<td>HP cents/pin</td>
<td>1.89</td>
<td>1.54</td>
<td>1.68</td>
<td>1.34</td>
</tr>
<tr>
<td>Mem pin ct.</td>
<td>24-100</td>
<td>48-160</td>
<td>62-256</td>
<td>81-179</td>
</tr>
<tr>
<td>CPU cost/pkg</td>
<td>2.644</td>
<td>45.493</td>
<td>67.059</td>
<td>123.5</td>
</tr>
<tr>
<td>Min Mem cost/pkg</td>
<td>Unspecified in 2008 ITRS Update</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note in 2008:
- Lack of specification on memory packaging and cost
- No frequency prediction other than 12-inverter delay

FB Dimm Idea

- **Need to create higher bandwidth**
 - **DDR2**
 - 400 MT/s configured
 - Up to 4 two-rank DIMM’s
 - **DDR3**
 - 800 MT/s configured
 - 1 2-rank Dimm
- **Move multi-drop bus to the DIMM**
 - Daisy chain the DIMMs using an AMB ASIC
 - AMB := Advanced Memory Buffer
 - Actually much more than a buffer
 - Also does bit-lane retiming
 - Packetized frame-relay protocol
 - AMD duties
 - Extract DRAM commands from frame
 - Control DRAM devices (2ndary mem.ctlr)
Replacement Strategy

FB Dimm Problems

• Device compatibility (the usual boat anchor)
 • still need
 » JEDEC standard – adopted after Intel push
 » use commodity DDR2&3 components
 » retain user configuration flexibility
 • However
 • significant increase in idle system latency
 • increased power consumption
 » big problem
 • AMB cost adder
 » incompatible with DRAM market economics
• Result
 • lots of resistance from system manufacturers
 » remember Intel makes the parts not the system
The AMB ASIC

• One hop in a daisy chain
 • role (incoming side = southbound channel)
 » examine frame contents
 » is it for me?
 * if so broadcast to the DRAM’s on the appropriate rank
 - marshal write data to the DRAM’s
 - read data converted into frames to place on northbound channel
 * if not – recondition signals and pass it on
 - classic store and forward network with a wrinkle
 - wrinkle is essentially cut-through routing
 - forward before digest and check
 - reduces latency but increases affected scope of errors
 • role (outbound = northbound side)
 » encapsulate data burst into frames
 * this involves a significant amount of bit-lane retiming

• Benefit
 • 6x FBD signaling rate over DRAM devices for DDR2

2 Rank FB-Dimm Diagram

FBD clock rate = 4 GT/s

DDR2 clock rate = 667 MT/s
FB Dimm Mesochronous Timing

• Multiple clock domains
 • synchronous w.r.t. each other
 • BUT – phase relationships are not strictly defined
 » hence the need for bit-lane retiming
 • skew and jitter exceed bit cycle times
 • removes need for trace length equality
 - “stub electronics” problem
 - a major stumbling block in non-FB DDR2 memory systems
 - simplifies interconnect design
 - at the expense of active “correct it” silicon
 » north- and south-bound lanes designed to be timing independent

• As always
 • the devil is in the details
 » so let's look at some of them

Signaling & Timing

• Not all that different – borrowed technology
 • Northbridge
 » likely contains both the PCIe and MemCtlr
 » so use PCIe style signaling
 • well understood technology
 • 1.5v differential signaling
 - optimized for FR4 PCB's
Clock Data Recovery

• Common problem
 • clock doesn’t have known phase relationship with data
 » one known technique
 • recover clock from the data signal
 • but this requires a known number of signal transitions
 • real data doesn’t look this way so encoding is required
 - 8b/10b Fibre Channel or HyperTransport scrambling models for example
 - provided DC balance – electrically important
 - simplifies clock recovery by insuring that enough transitions occur
 per some unit of time
 » result
 • use transitions to recover clock
 • use recovered clock to determine data
 - implied: clock skew/jitter doesn’t change wildly in short time frame

• Actual FB-Dimm standard uses a simpler approach
 • no inter-lane phase relationships specified
 » does specify transition density
 • 6 transition minimum in a 512 bit frame

Unit Interval

• DDR & 6:1
 • 12 UI’s/DRAM clock cycle form the FB-Dimm “frame”

• Bit lane independence
 • cause: latency and path length variations
 • result: several UI difference in lane burst arrival at an AMB

• FB-Dimm and AMB requirements
 • logic to deskew the data across the independent bit lanes
 • danger: increased latency = de-skew-time*hop-count
Benefit: Less Routing Restriction

Source: Intel

Resync Latency Cost

- **Forwarding delay dominated by slowest lane**

 ![Diagram](image1)

 - Out of sync frame
 - Resynced frame

- **Too slow if resync is done on every hop**
 - **hence 2 southbound frame relay modes**
 - **resample**
 - clock recovery removes bit jitter in a lane
 - does not correct lane UI skew
 - spec allows a maximum of 46 UI difference between lanes
 - **resync**
 - delay retransmit until all lanes are collected
 - then drive resynchronized frame
3 AMB Datapaths

- **Resample and Resync**
- **Plus need to extract southbound command**
 - in case target is this DIMM
 - note forward anyway style
 - decode and forward if it's not for me option is intractable
 - since decode time would have to be added to each southbound hop

Protocol

- **Asymmetric channels**
 - **southbound**
 - 10 bit lanes * 12 UI's = 120 bits/frame
 - half peak write bandwidth
 - 4 UI's for command – hence 80 write data bits/frame
 - **northbound**
 - 14 bit lanes * 12 UI's = 168 bits/frame
 - full peak read bandwidth of a target rank
 - **both contain CRC info for data recovery at receiver**
 - and actual data/frame is less: 72 (64+8) & 144 (128+16)
 - to support fail over mechanism (more on this soon)

- **3 common frame types**
Frame Formats

- Southbound command only
 - 3 commands/frame
 - sent to independent DIMMs or ranks
 - improve parallelism
 - can also allow certain modules to be moved to a lower power state
 - nops or platform specific debug patterns pad frame when 3 commands aren’t needed

- Southbound command and write data
 - command, 64 data, and 8 check bits
 - 8 bits can be used as a byte mask if DIMM doesn’t support ECC
 - weirdness
 - multiple frames are needed for a full write burst
 - they do not need to be contiguous (indicates read priority model)
 - each write-data subframe only contains 1 bit of the target AMB address
 - 3 subframes needed to form full address (8 DIMM max spec)
 - implies ALL AMB’s must buffer write data before destination is known
 - energy cost of writes exacerbated

- Northbound read – 1 DIMM cycle read return 128 + 16

Commands

- 2 types
 - channel
 - manage the AMB’s
 - debug
 - read and write configuration register
 - clock enable management
 - soft channel reset
 - recover when a transmission error is detected
 - mem_ctlr detects CRC error or AMB signals via an alert frame
 - reset and then retry all writes that weren’t committed
 - channel sync
 - ensure that AMB clock recovery circuits see the min. # of transitions
 - southbound – transitions provided by mem_ctlr as fake write data
 - northbound response – last DIMM sends fake read return
 - must be inserted once every 42-46 frames (JEDEC standard)
 - implies channel can’t be powered down easily (another power defect)

- DRAM
 - AMB’s decode and send to DRAM devices on the DIMM
Frame and Command Scheduling

- **Interesting set of choices**
 - master to multiple slave controllers (obvious)
 - FB mem_ctlr still maintains total control of:
 - DRAM and frame scheduling
 - minimizes logic in AMB’s
 - AMB’s respond to channel commands with predictable timing
 - also translates channel to DRAM commands but w/o additional scheduling
 - AMB’s do not
 - check for DRAM protocol compliance
 - does not protect against northbound frame collision
 - apparent strategy
 - minimize additional latency hit in the AMB daisy chain
 - already problematic due to the resync issue
 - maintain centralized control over scheduling and DRAM timing
 - AMB is less specialized for the DDRx DRAM component flavor
 - AMB predictable timing response is required for this to happen anyway
- **Result**
 - improve capacity & bandwidth, sacrifice latency

Sample Read & Write Transactions

- A: RAS B: CAS and precharge
- DRAM RAS and posted CAS scheduled to different DRAM clocks
- Latency critical commands should be posted in slot A

Write data does not need to be contiguous – allows read returns to be interleaved in a write burst, write command can precede completion of write data delivery
AMBe Asic

- 3 logic blocks
 - northbound pass-through
 - southbound pass-through
 » all commands must be partially decoded
 - core
 » current write buffer design
 - buffer 32 72-bit write data frames
 - allows priority for read returns
 - plus buffer the 3 write data frames that must be speculatively stored
 - since only 1-bit of the target AMB address is contained in each frame
 » CRC check & generate logic
 » PISO (parallel in serial out)
 - serializes read returns into proper frame format on northbound lane
 » read return data is sync’d for seamless entry onto northbound lanes
 - removes rank switching overhead seen in conventional DDRx
 - maximizes read bandwidth

Typical AMB Block Diagram

SMBus: Mem. Ctr R/W
access to configuration
registers. Independent
of high-speed N & S lanes.

DOES NOT – allow data access
if northbound lanes fail
Additional Features

• **BIST**
 - for large capacity sequential testing is prohibitive
 - BIST feature allows parallel test
 - what is it really?
 » several autonomous FSM’s configured via the SMBus

• **Thermal sensor**
 - 2-rank FB-Dimm and AMB consumes up to 20 watts
 » hence thermals can change rapidly
 » need
 • protect the devices
 • keep the thermal sensitive electrical properties in “open eye” status
 - FB mem_ctlr periodically reads the thermal sensor
 » throttles commands as necessary
 » more centralized control

RAS Features

• **Reliability, Availability, Serviceability**

• **Checksum in the transport layer**
 - **CRC**
 » particularly needed due to timing uncertainty
 • correct when a single bit lane loses phase
 • resulting in burst loss on a single lane

• **Bit lane steering**
 - lane failure happens
 » most commonly caused by DIMM socket interconnect failure
 • users put DIMMs in sockets
 • uneven or ham-fisted pressure causes metal fatigue
 • repeated thermal variations subsequently cause permanent failure
 - **cure**
 » for single lane failure steer remaining 9 lanes to the working lanes
Steering Example

- South lane failure example
 - alert frame sent north
 - enters error wait
 - FB ctrl sends soft reset
 - hence must keep copies of commands and data in flight
 - run training sequence to discover faulty lane
 - hence must keep copies of commands and data in flight
 - reconfigure registers via SMBus
 - failed lane does reduce CRC protection
 - note
 - top and bottom lanes are not protected

Southbound Fail Over Mode

- Command and write data example
 - normal 10 lanes & 120 bit frames
 - 2 bits: frame type
 - 24 bits: command
 - 8 check or mask bits
 - 22 bits of CRC
 - 64 bits of data
 - 9 bit lanes due to lane failure
 - 22 bit CRC reduced to 10 bits
 - remember 12 bits per frame per lane
 - good enough to detect
 - 1, 2, & 3 bit faults
 - continuous faults in another lane
Northbound Fail Over Mode

- **14 lanes – 168 bits/frame**
 - 128 data
 - split into two groups
 - 16 check
 - 24 CRC
 - also split into two groups to match data split
- **13 lane failover**
 - CRC becomes 2 6-bit groups
- **12 lane failover**
 - lose the check bits
 - however
 - in the standard
 - not currently supported by AMB ASIC
 - so if 2nd lane fails
 - use 13 lane to remove data (corrected by CRC) & quarantine

Hot Add and Replace

- **Point to point signaling**
 - lends itself to fault isolation
 - connectors are pass through if no DIMM
 - UI timing slack already built into the protocol
- **Error log kept**
 - sysadmin notified
 - direct data removal and quarantine if possible
 - under quarantine power removed from faulty socket
 - replace faulty DIMM
 - unquarantine brings new DIMM back online
FB Dimm Performance

<table>
<thead>
<tr>
<th>Component</th>
<th>Min (ps)</th>
<th>Max (ps)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Ctrlr to DIMM flight</td>
<td>800</td>
<td>1200</td>
<td>routing distance dependent</td>
</tr>
<tr>
<td>B: SB Frame resample</td>
<td>900</td>
<td>1600</td>
<td>process dependent</td>
</tr>
<tr>
<td>C: SB DIMM-DIMM flight</td>
<td>600</td>
<td>900</td>
<td>routing distance dependent</td>
</tr>
<tr>
<td>D: Frame de-skew & parallelize</td>
<td>5000</td>
<td>5900</td>
<td>realign independent bit-lanes</td>
</tr>
<tr>
<td>E: Cmd check & decode</td>
<td>3000</td>
<td>3000</td>
<td>AMB specific</td>
</tr>
<tr>
<td>F: DRAM access</td>
<td>25200</td>
<td>25200</td>
<td>RCD+1CAS+1DQSCK+CLK_Delay</td>
</tr>
<tr>
<td>G: Data serialization</td>
<td>4500</td>
<td>4500</td>
<td>includes CRC generation</td>
</tr>
<tr>
<td>H: Data merge by NB traffic</td>
<td>1800</td>
<td>2800</td>
<td>time to wait for frame alignment</td>
</tr>
<tr>
<td>I: NB DIMM2DIMM flight</td>
<td>800</td>
<td>900</td>
<td>routing distance dependent</td>
</tr>
<tr>
<td>J: NB Frame resync</td>
<td>2000</td>
<td>3200</td>
<td>may need to remerge on NB lanes</td>
</tr>
<tr>
<td>K: DIMM2CTRLR flight</td>
<td>800</td>
<td>1200</td>
<td>routing distance dependent</td>
</tr>
<tr>
<td>L: Frame into CTRLR</td>
<td>3000</td>
<td>3000</td>
<td>deserialization delay</td>
</tr>
</tbody>
</table>

Basis: 667 MT/s DDR2 Dram

2 AMB example – actual latency increases w/ capacity e.g. # of FB-DIMMs
Typical – 1st FB-Dimm operates in resync – rest in resample

Fixed vs. Variable Latency Scheduling

• More FB-DIMM complexity
 • Actual latency depends on where the FB-DIMM sits
 » closest is fastest
 » BUT different DRAM speeds are also allowed
 • CTRLR samples to determine properties
 • Fixed
 » base all timing schedules on slowest return
 • each AMB responsible for placing their return to match slowest
 • Variable
 » DIMM puts return on as soon as it is available
 » problems – you bet!!!
 • northbound collisions could occur
 • hence limited to short channel configurations (presently)

• Extensions being studied
 • there are obvious flaws in the current standard
Conclusions

• Not clear if FB-DIMM is a good idea
 • improves bandwidth but additional cost and latency
 » DRAM system cost is a huge concern for platform builders
 • allows more capacity but w/ capacity dependent latency
 » BoB designed to mitigate this
 • but higher cost due to more pins

• Will Intel cut and run
 • TBD

• Personal conclusion
 • there just has to be a better way
 » reluctance of system builders to adopt is a strong signal
 • DRAM by nature is hairy
 » FB just made it worse

• Phew!!