
Page 1 

1 CS7810 
School of Computing 
University of Utah 

FB Dimm’s 

Reference: “Memory Systems: Cache,
 DRAM, Disk 

Bruce Jacob, Spencer Ng, & David Wang 

Today’s material & any uncredited diagram
 came from Chapter 14 
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The Problem 
•  Multi-drop busses don’t scale well 

  demand for higher memory bandwidth continues 

  traditional memory architecture scaling 
»  can happen in speed or capacity but not both 

»  market expectation 
•  more for the same price 

•  OR more for less 

•  Intel’s idea but solution is a common one 
  replace with point to point signaling 

»  mitigates signal integrity problem 

»  introduces the multi-hop problem 

•  Short story 
  already has proven to be problematic 

  Intel now moving to BoB (Buffer on Board) 
»  essentially a multi-spigot FB Dimm idea 
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ITRS Comparison Humor 
2001 ITRS 

2004 2007 2010 2013 2016 
Process (nm) 90 65 45 32 22 

CPU GHz 3.99 6.74 12 19 29 
Mlogic T/CM2 77.2 154.3 309 617 1235 
Hperf pin ct. 2263 3012 4009 5335 7100 
HP cents/pin 1.88 1.61 1.68 1.44 1.22 

Mem cents/pin 0.34-1.39 0.27-0.84 0.22-0.34 0.19-0.39 0.19-0.33 
Mem pin ct. 48-160 48-160 62-208 81-270 105-351 

CPU cost/pkg 42.5444 48.4932 67.3512 76.824 86.62 
Max Mem cost/

pkg 2.224 1.344 0.7072 1.053 1.1583 
Min Mem cost/

pkg 0.1632 0.1296 0.1364 0.1539 0.1995 

2008 ITRS 
2007 2010 2013 2016 

Process (nm) 68 45 32 22.5 

CPU GHz 
12 inv 
delays 4.7 5.8 7.3 9.1 

Mlogic T/CM2 154 309 617 1235 
Hperf pin ct. 33% P & G 3072 3072 3072 3072 
HP cents/pin .69-1.13 .60-1.20 .51-.87 .44-.75 

Mem cents/pin .27-.5 .23-.44 .20-.38 .20-.32 
Mem pin ct. 

Unspecified in 2008 ITRS Update 

CPU cost/pkg 
Max Mem cost/

pkg 
Min Mem cost/

pkg 

Note in 2008: 
• lack of specification on memory packaging and cost 
• no frequency prediction other than 12-inverter delay 

Remember in 2001: 
frequency wars were still 
ongoing, and power  
worries were just starting 
to peek over the horizon 
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FB Dimm Idea 
•  Need to create higher bandwidth 

  DDR2 
»  400 MT/s configured 

•  up to 4 two-rank DIMM’s 

  DDR3 
»  800 MT/s configured 

•  1 2-rank Dimm 

•  Move multi-drop bus to the DIMM 
  daisy chain the DIMMs using an AMB ASIC 

»  AMB ::= Advanced Memory Buffer 
•  actually much more than a buffer 

•  also does bit-lane retiming 

•  packetized frame-relay protocol 

»  AMD duties 
•  extract DRAM commands from frame 

•  control DRAM devices (2ndary mem.ctlr) 
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Replacement Strategy 

THIS 

WITH THIS 
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FB Dimm Problems 
•  Device compatibility (the usual boat anchor) 

  still need 
»  JEDEC standard – adopted after Intel push 

»  use commodity DDR2&3 components 

»  retain user configuration flexibility 

•  However 
  significant increase in idle system latency 

  increased power consumption 
»  big problem 

  AMB cost adder 
»  incompatible with DRAM market economics 

•  Result 
  lots of resistance from system manufacturers 

»  remember Intel makes the parts not the system   
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The AMB ASIC 
•  One hop in a daisy chain 

  role (incoming side = southbound channel) 
»  examine frame contents 

»  is it for me? 
•  if so broadcast to the DRAM’s on the appropriate rank 

–  marshal write data to the DRAM’s 

–  read data converted into frames to place on northbound channel 

•  if not – recondition signals and pass it on 
–  classic store and forward network with a wrinkle 

–  wrinkle is essentially cut-through routing 

–  forward before digest and check 

–  reduces latency but increases affected scope of errors 

  role (outbound = northbound side) 
»  encapsulate data burst into frames 

•  this involves a significant amount of bit-lane retiming 

•  Benefit 
  6x FBD signaling rate over DRAM devices for DDR2 
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2 Rank FB-Dimm Diagram 

DDR2 clock rate = 667 MT/s 

FBD clock rate = 4 GT/s 
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FB Dimm Mesochronous Timing 
•  Multiple clock domains 

  synchronous w.r.t. each other 

  BUT – phase relationships are not strictly defined 
»  hence the need for bit-lane retiming 

•  skew and jitter exceed bit cycle times 

•  removes need for trace length equality 
–  “stub electronics” problem 

–  a major stumbling block in non-FB DDR2 memory systems 

–  simplifies interconnect design 

–  at the expense of active “correct it” silicon 

»  north- and south-bound lanes designed to be timing
 independent 

•  As always 
  the devil is in the details 

»  so let’s look at some of them 
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Signaling & Timing 
•  Not all that different – borrowed technology 

  Northbridge 
»  likely contains both the PCIe and Mem_Ctlr 

»  so use PCIe style signaling 
•  well understood technology 

•  1.5v differential signaling 
–  optimized for FR4 PCB’s 
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Clock Data Recovery 
•  Common problem 

  clock doesn’t have known phase relationship with data 
»  one known technique 

•  recover clock from the data signal 

•  but this requires a known number of signal transitions 

•  real data doesn’t look this way so encoding is required 
–  8b/10b Fibre Channel or HyperTransport scrambling models for example 

–  provided DC balance – electrically important 

–  simplifies clock recovery by insuring that enough transitions occur
 per some unit of time 

»  result 
•  use transitions to recover clock 

•  use recovered clock to determine data 
–  implied: clock skew+jitter doesn’t change wildly in short time frame 

•  Actual FB-Dimm standard uses a simpler approach 
  no inter-lane phase relationships specified 

»  does specify transition density  
•  6 transition minimum in a 512 bit frame 
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Unit Interval 
•  DDR & 6:1 

  12 UI’s/DRAM clock cycle form the FB-Dimm “frame” 

•  Bit lane independence 
  cause: latency and path length variations 

  result: several UI difference in lane burst arrival at an AMB 

•  FB-Dimm and AMB requirements 
  logic to deskew the data across the independent bit lanes 
  danger: increased latency = de-skew-time*hop-count 
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Benefit: Less Routing Restriction 

Source: Intel 
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Resync Latency Cost 
•  Forwarding delay dominated by slowest lane 

•  Too slow if resync is done on every hop 
  hence 2 southbound frame relay modes 

»  resample 
•  clock recovery removes bit jitter in a lane 

•  does not correct lane UI skew 
–  spec allows a maximum of 46 UI difference between lanes 

»  resync 
•  delay retransmit until all lanes are collected 

•  then drive resynchronized frame 
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3 AMB Datapaths 
•  Resample and Resync 

•  Plus need to extract southbound command 
  in case target is this DIMM 

  note forward anyway style 
»  decode and forward if it’s not for me option is intractable 

•  since decode time would have to be added to each southbound hop 
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Protocol 
•  Asymmetric channels 

  southbound 
»  10 bit lanes * 12 UI’s = 120 bits/frame 

•  half peak write bandwidth 

•  4 UI’s for command – hence 80 write data bits/frame 

  northbound 
»  14 bit lanes * 12 UI’s = 168 bits/frame 

•  full peak read bandwidth of a target rank 

  both contain CRC info for data recovery at receiver 
»  and actual data/frame is less: 72 (64+8) & 144 (128+16) 

•  to support fail over mechanism (more on this soon) 

•  3 common frame types 
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Frame Formats 
  Southbound command only 

»  3 commands/frame 
•  sent to independent DIMMs or ranks  

–  improves parallelism 

–  can also allow certain modules to be moved to a lower power state 

•  nops or platform specific debug patterns pad frame when 3
 commands aren’t needed 

  Southbound command and write data 
»  command, 64 data, and 8 check bits 

•  8 bits can be used as a byte mask if DIMM doesn’t support ECC 

»  weirdness 
•  multiple frames are needed for a full write burst 

–  they do not need to be contiguous (indicates read priority model) 

•  each write-data subframe only contains 1 bit of the target AMB
 address 

–  3 subframes needed to form full address (8 DIMM max spec) 

–  implies ALL AMB’s must buffer write data before destination is known 

–  energy cost of writes exacerbated 

  Northbound read – 1 DIMM cycle read return 128 + 16 
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Commands 
•  2 types 

  channel 
»  manage the AMB’s 

•  debug 

•  read and write configuration register 

•  clock enable management 

•  soft channel reset 
–  recover when a transmission error is detected 

–  mem_ctlr detects CRC error or AMB signals via an alert frame 

–  reset and then retry all writes that weren’t committed 

•  channel sync 
–  insure that AMB clock recovery circuits see the min. # of transitions 

–  southbound – transitions provided by mem_ctlr as fake write data 

–  northbound response – last DIMM sends fake read return 

–  must be inserted once every 42-46 frames (JEDEC standard) 

–  implies channel can’t be powered down easily (another power defect) 

  DRAM 
»  AMB’s decode and send to DRAM devices on the DIMM 
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Frame and Command Scheduling 
•  Interesting set of choices 

  master to multiple slave controllers (obvious) 

  FB mem_ctlr still maintains total control of: 
»  DRAM and frame scheduling 

•  minimizes logic in AMB’s 

•  AMB’s respond to channel commands w/ predictable timing 
–  also translates channel to DRAM commands but w/o additional scheduling 

•  AMB’s do not  
–  check for DRAM protocol compliance 

–  does not protect against northbound frame collision 

»  apparent strategy 
•  minimize additional latency hit in the AMB daisy chain 

–  already problematic due to the resync issue 

•  maintain centralized control over scheduling and DRAM timing 
–  AMB is less specialized for the DDRx DRAM component flavor 

–  AMB predictable timing response is required for this to happen anyway 

•  Result 
  improve capacity & bandwidth, sacrifice latency 
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Sample Read & Write Transactions 

A: RAS B:CAS and precharge 
DRAM RAS and posted CAS scheduled to different DRAM clocks 
Latency critical commands should be posted in slot A 

Write data does not need to be contiguous – allows read returns 
to be interleaved in a write burst, write command can precede completion 
of write data delivery 
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AMB Asic 
•  3 logic blocks 

  northbound pass-through 

  southbound pass-through 
»  all commands must be partially decoded 

  core 
»  current write buffer design 

•  buffer 32 72-bit write data frames 
–  allows priority for read returns 

•  plus buffer the 3 write data frames that must be speculatively
 stored 

–  since only 1-bit of the target AMB address is contained in each frame 

»  CRC check & generate logic 

»  PISO (parallel in serial out) 
•  serializes read returns into proper frame format on northbound lane 

»  read return data is sync’d for seamless entry onto northbound
 lanes 

•  removes rank switching overhead seen in conventional DDRx 

•  maximizes read bandwidth 
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Typical AMB Block Diagram 

SMBus: Mem_Ctlr R/W 
access to configuration 
registers.  Independent 
of high-speed N & S lanes. 

DOES NOT – allow data access 
if northbound lanes fail  
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Additional Features 
•  BIST 

  for large capacity sequential testing is prohibitive 

  BIST feature allows parallel test 
  what is it really? 

»  several autonomous FSM’s configured via the SMBus 

•  Thermal sensor 
  2-rank FB-Dimm and AMB consumes up to 20 watts 

»  hence thermals can change rapidly 

»  need 
•  protect the devices 

•  keep the thermal sensitive electrical properties in “open eye”
 status 

  FB mem_ctlr periodically reads the thermal sensor 
»  throttles commands as necessary 

»  more centralized control 
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RAS Features 
•  Reliability, Availability, Serviceability 

•  Checksum in the transport layer 
  CRC 

»  particularly needed due to timing uncertainty 
•  correct when a single bit lane loses phase 

•  resulting in burst loss on a single lane 

•  Bit lane steering 
  lane failure happens 

»  most commonly caused by DIMM socket interconnect failure 
•  users put DIMMs in sockets 

•  uneven or ham-fisted pressure causes metal fatigue 

•  repeated thermal variations subsequently cause permanent failure 

  cure 
»  for single lane failure steer remaining 9 lanes to the working

 lanes  
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Steering Example •  South lane failure example 
  alert frame sent north 

  enters error wait 

  FB ctlr sends soft reset 
»  hence must keep copies of commands

 and data in flight 

»  run training sequence to discover
 faulty lane 

»  reconfigure registers via SMBus 

  failed lane does reduce CRC
 protection 

  note 
»  top and bottom lanes are not

 protected 
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Southbound Fail Over Mode 
•  Command and write data example 

  normal 10 lanes & 120 bit frames 
»  2 bits: frame type 

»  24 bits: command 

»  8 check or mask bits 

»  22 bits of CRC 

»  64 bits of data 

  9 bit lanes due to lane failure 
»  22 bit CRC reduced to 10 bits 

•  remember 12 bits per frame per lane 

»  good enough to detect 
•  1, 2, & 3 bit faults 

•  continuous faults in another lane 
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Northbound Fail Over Mode 
•  14 lanes – 168 bits/frame 

  128 data 
»  split into two groups 

  16 check 
  24 CRC 

»  also split into two groups to match data split 

•  13 lane failover 
  CRC becomes 2 6-bit groups 

•  12 lane failover 
  lose the check bits 

  however 
»  in the standard 

»  not currently supported by AMB ASIC 

  so if 2nd lane fails 
»  use 13 lane to remove data (corrected by CRC) & quarantine 
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Hot Add and Replace 
•  Point to point signaling  

  lends itself to fault isolation 

  connectors are pass through if no DIMM 
  UI timing slack already built into the protocol 

•  Error log kept 
  sysadmin notified 

»  direct data removal and quarantine if possible 

»  under quarantine power removed from faulty socket 
•  replace faulty DIMM 

»  unquarantine brings new DIMM back online 
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FB Dimm Performance 

Component Min 
(ps) 

Max 
(ps) Notes 

A: Ctrlr to 
DIMM flight 800 1200 routing distance dependent 

B: SB frame 
resample 900 1600 process dependent 

C: SB DIMM-
DIMM flight 600 900 routing distance dependent 

D: Freme de-
skew & 
parallize 

5000 5900 realign independent bit-lanes 

E: Cmd check & 
decode 3000 3000 AMB specific 

F: DRAM access 25200 25200 tRCD+tCAS+tDQSCK+CLK_Delay 

G: Data 
serialization 4500 4500 includes CRC generation 

H: Data merge 
w/ NB traffic 1800 2800 time to wait for frame alignment 

I: NB 
DIMM2DIMM 
flight 

600 900 routing distance dependent 

J: NB frame 
resync 2000 3200 may need to remerge on NB lanes 

K: DIMM2CTLR 
flight 800 1200 routing distance dependent 

L: Frame-into-
CTLR 3000 3000 deserialization delay 

2 AMB example – actual  
latency increases w/ capacity 
e.g. # of FB-DIMMs 
Typical – 1st FB-Dimm operates in 
resync – rest in resample 

Basis: 667 MT/s DDR2 Dram 
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Fixed vs. Variable Latency Scheduling 
•  More FB-DIMM complexity 

  Actual latency depends on where the FB-DIMM sits 
»  closest is fastest 

»  BUT different DRAM speeds are also allowed 
•  CTLR samples to determine properties 

  Fixed  
»  base all timing schedules on slowest return 

•  each AMB responsible for placing their return to match slowest 

  Variable 
»  DIMM puts return on as soon as it is available 

»  problems – you bet!! 
•  northbound collisions could occur 

•  hence limited to short channel configurations (presently) 

•  Extensions being studied 
  there are obvious flaws in the current standard 
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Conclusions 
•  Not clear if FB-DIMM is a good idea 

  improves bandwidth but additional cost and latency 
»  DRAM system cost is a huge concern for platform builders 

  allows more capacity but w/ capacity dependent latency 
»  BoB designed to mitigate this 

•  but higher cost due to more pins 

•  Will Intel cut and run 
  TBD 

•  Personal conclusion 
  there just has to be a better way 

»  reluctance of system builders to adopt is a strong signal 

  DRAM by nature is hairy 
»  FB just made it worse 

•  Phew!! 


