
Lecture 18: Core Design, Parallel Algos

• Today: Innovations for ILP, TLP, power and parallel algos

• Sign up for class presentations
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SMT Fetch Policy

• Fetch policy has a major impact on throughput: depends
on cache/bpred miss rates, dependences, etc.

• Commonly used policy: ICOUNT:  every thread has an
equal share of resources
 faster threads will fetch more often: improves thruput
 slow threads with dependences will not hoard resources
 low probability of fetching wrong-path instructions
 higher fairness
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Area Effect of Multi-Threading

• The curve is linear for a while
• Multi-threading adds a 5-8% area overhead per thread (primary
caches are included in the baseline)

From Davis et al., PACT 2005



Single Core IPC

4 bars correspond to 4 different L2 sizes

IPC range for different L1 sizes



Maximal Aggregate IPCs



Power/Energy Basics

• Energy = Power x time

• Power = Dynamic power + Leakage power

• Dynamic Power = α C V2 f 
α switching activity factor
C  capacitances being charged
V  voltage swing
f  processor frequency 



Guidelines

• Dynamic frequency scaling (DFS) can impact power, but
has little impact on energy

• Optimizing a single structure for power/energy is good
for overall energy only if execution time is not increased

• A good metric for comparison: ED   (because DVFS is an
alternative way to play with the E-D trade-off)

• Clock gating is commonly used to reduce dynamic energy,
DFS is very cheap (few cycles), DVFS and power gating
are more expensive (micro-seconds or tens of cycles,
fewer margins, higher error rates)
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Criticality Metrics

• Criticality has many applications: performance and
power;  usually, more useful for power optimizations

• QOLD – instructions that are the oldest in the
issueq are considered critical
 can be extended to oldest-N
 does not need a predictor
 young instrs are possibly on mispredicted paths
 young instruction latencies can be tolerated
 older instrs are possibly holding up the window
 older instructions have more dependents in

the pipeline than younger instrs



Other Criticality Metrics

• QOLDDEP: Producing instructions for oldest in q

• ALOLD: Oldest instr in ROB

• FREED-N: Instr completion frees up at least N
dependent instrs

• Wake-Up: Instr completion triggers a chain of
wake-up operations

• Instruction types: cache misses, branch mpreds,
and instructions that feed them



Parallel Algorithms – Processor Model

• High communication latencies  pursue coarse-grain
parallelism (the focus of the course so far)

• Next, focus on fine-grain parallelism

• VLSI improvements  enough transistors to accommodate
numerous processing units on a chip and (relatively) low
communication latencies

• Consider a special-purpose processor with thousands of
processing units, each with small-bit ALUs and limited
register storage
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Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs
will require minor modifications)

• At each clock, processors receive inputs from neighbors,
perform computations, generate output for neighbors, and
update local storage

input

output
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Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “∗”, which is
bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor
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Sorting Example
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Result Output

• The output process begins when a processor receives
a non-∗, followed by a “∗”

• Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?
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Output Example
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Bit Model

• The bit model affords a more precise measure of
complexity – we will now assume that each processor
can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k
2-d array of bit processors
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Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically – after at most 2k steps, each processor
knows which number must be moved to the right – 2kN
steps in the worst case

• Strategy 2: Use a tree to communicate information on
which number is greater – after 2logk steps, each processor
knows which number must be moved to the right – 2Nlogk
steps

• Can we do better? 
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Strategy 2: Column of Trees
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Pipelined Comparison

Input numbers:     3   4   2
0   1   0
1   0   1
1   0   0
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Complexity

• How long does it take to sort N k-bit numbers?
(2N – 1)  +  (k – 1)  +  N (for output)

• (With a 2d array of processors) Can we do even better? 

• How do we prove optimality?
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Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output
with k pins – requires Ω(N) time

• Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k)  – for
example, N-1 numbers are 011..1 and the last number is
either 00…0 or 10…0 – it takes at least N+k-2 steps for
information to travel across the diameter

• Bisection width: if processors in one half require the 
results computed by the other half, the bisection bandwidth
imposes a minimum completion time
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Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be
in the wrong half, will any algorithm take at least N/2 steps?
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Counting Algorithm

• It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

• After the root has computed the number of 1’s, this
number is communicated to the leaves – the leaves
accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the
other half (logN-1 bits) – therefore, the algorithm takes
Ω(logN) time

• Careful when estimating lower bounds!
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Title

• Bullet
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