
Lecture 18: Core Design, Parallel Algos

• Today: Innovations for ILP, TLP, power and parallel algos

• Sign up for class presentations

1

SMT Pipeline Structure

Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

SMT maximizes utilization of shared execution engine

SMT Fetch Policy

• Fetch policy has a major impact on throughput: depends
on cache/bpred miss rates, dependences, etc.

• Commonly used policy: ICOUNT: every thread has an
equal share of resources
 faster threads will fetch more often: improves thruput
 slow threads with dependences will not hoard resources
 low probability of fetching wrong-path instructions
 higher fairness

3

Area Effect of Multi-Threading

• The curve is linear for a while
• Multi-threading adds a 5-8% area overhead per thread (primary
caches are included in the baseline)

From Davis et al., PACT 2005

Single Core IPC

4 bars correspond to 4 different L2 sizes

IPC range for different L1 sizes

Maximal Aggregate IPCs

Power/Energy Basics

• Energy = Power x time

• Power = Dynamic power + Leakage power

• Dynamic Power = α C V2 f
α switching activity factor
C capacitances being charged
V voltage swing
f processor frequency

Guidelines

• Dynamic frequency scaling (DFS) can impact power, but
has little impact on energy

• Optimizing a single structure for power/energy is good
for overall energy only if execution time is not increased

• A good metric for comparison: ED (because DVFS is an
alternative way to play with the E-D trade-off)

• Clock gating is commonly used to reduce dynamic energy,
DFS is very cheap (few cycles), DVFS and power gating
are more expensive (micro-seconds or tens of cycles,
fewer margins, higher error rates)

2

8

Criticality Metrics

• Criticality has many applications: performance and
power; usually, more useful for power optimizations

• QOLD – instructions that are the oldest in the
issueq are considered critical
 can be extended to oldest-N
 does not need a predictor
 young instrs are possibly on mispredicted paths
 young instruction latencies can be tolerated
 older instrs are possibly holding up the window
 older instructions have more dependents in

the pipeline than younger instrs

Other Criticality Metrics

• QOLDDEP: Producing instructions for oldest in q

• ALOLD: Oldest instr in ROB

• FREED-N: Instr completion frees up at least N
dependent instrs

• Wake-Up: Instr completion triggers a chain of
wake-up operations

• Instruction types: cache misses, branch mpreds,
and instructions that feed them

Parallel Algorithms – Processor Model

• High communication latencies  pursue coarse-grain
parallelism (the focus of the course so far)

• Next, focus on fine-grain parallelism

• VLSI improvements  enough transistors to accommodate
numerous processing units on a chip and (relatively) low
communication latencies

• Consider a special-purpose processor with thousands of
processing units, each with small-bit ALUs and limited
register storage

11

Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs
will require minor modifications)

• At each clock, processors receive inputs from neighbors,
perform computations, generate output for neighbors, and
update local storage

input

output

12

Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “∗”, which is
bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

13

Sorting Example

14

Result Output

• The output process begins when a processor receives
a non-∗, followed by a “∗”

• Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?

15

Output Example

16

Bit Model

• The bit model affords a more precise measure of
complexity – we will now assume that each processor
can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k
2-d array of bit processors

17

Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically – after at most 2k steps, each processor
knows which number must be moved to the right – 2kN
steps in the worst case

• Strategy 2: Use a tree to communicate information on
which number is greater – after 2logk steps, each processor
knows which number must be moved to the right – 2Nlogk
steps

• Can we do better?

18

Strategy 2: Column of Trees

19

Pipelined Comparison

Input numbers: 3 4 2
0 1 0
1 0 1
1 0 0

20

Complexity

• How long does it take to sort N k-bit numbers?
(2N – 1) + (k – 1) + N (for output)

• (With a 2d array of processors) Can we do even better?

• How do we prove optimality?

21

Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output
with k pins – requires Ω(N) time

• Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) – for
example, N-1 numbers are 011..1 and the last number is
either 00…0 or 10…0 – it takes at least N+k-2 steps for
information to travel across the diameter

• Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
imposes a minimum completion time

22

Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be
in the wrong half, will any algorithm take at least N/2 steps?

23

Counting Algorithm

• It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

• After the root has computed the number of 1’s, this
number is communicated to the leaves – the leaves
accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the
other half (logN-1 bits) – therefore, the algorithm takes
Ω(logN) time

• Careful when estimating lower bounds!
24

Title

• Bullet

25

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

