Lecture 17: Core Design

e Today: implementing core structures — rename, issue
gueue, bypass networks; innovations for high ILP
and clock speed

Register Rename Logic

_ Physical Physical
Logical Source Dest
Source Regs / Regs

Regs >
Logical
Dest
Regs
Logical

Source Reg

Map Table — RAM

7-bits 7-bits 7-bits 7-bits 7-bits

Num entries =
Num logical regs

Shadow copies (shift register)

Map Table — CAM

5-bits 1-bit 1-bit

Num entries =
Num phys regs

Shadow copies

Wakeup Logic

tagl taglW

o 7] 15— o]

Selection Logic

grant

enable

anyreq

Arbiter cell

enable

* For multiple FUs, will need sequential selectors

Structure Complexities

e Critical structures:
register map tables, issue queue, LSQ, register file,
register bypass

* Cycle time is heavily influenced by:
window size (physical register size), issue width (#FUs)

» Conflict between the desire to increase IPC and clock speed
e Can achieve both if we use large structures and deep

pipelining; but, some structures can’t be easily pipelined and
long-latency structures can also hurt IPC

Deep Pipelines

* What does it mean to have
- 2-cycle wakeup
- 2-cycle bypass
-> 2-cycle regread

Freguency Scaling Options

- [E| 2-cycle wakeup

2-cycle regread

. . 2-cycle bypass

Capacity Scaling

Pipeline Scaling

Replicated Capacity
Scaling

Recent Trends

* Not much change in structure capacities
* Not much change in cycle time

 Pipeline depths have become shorter (circuit delays have
reduced); this is good for energy efficiency

* Optimal performance is observed at about 50 pipeline
stages (we are currently at ~20 stages for energy reasons)

* Deep pipelines improve parallelism (helps if there’s ILP);
Deep pipelines increase the gap between dependent

instructions (hurts when there is little ILP)
10

ILP Limits wall 1993

parallelism

64

50
40

20

LIPS T S = S < R

[

1

e @ » harmonic mean

VYIRS

Stupid

Poor

Fair

Good

(Great

Superb

Perfect

-

IPEEP

tomcaty
oduc
egrep

TWITLL
fl}-' m’_?cq
eipresso
gccl
mdljsp2
gér 1PIess
seclil ?
met
Vace

F::n
1

ora
alviom

Techniques for High ILP

 Better branch prediction and fetch (trace cache)
—> cascading branch predictors?
* More physical registers, ROB, issue queue, LSQ
- two-level regfile/1Q?
 Higher issue width
-> clustering?
* Lower average cache hierarchy access time
 Memory dependence prediction
 Latency tolerance techniques: ILP, MLP, prefetch, runahead,
multi-threading

12

Impact of Mem-Dep Prediction

* In the perfect model, loads only wait for conflicting
stores; in naive model, loads issue speculatively and must
be squashed if a dependence is later discovered

IPC
O = N oW s @ =
1

—
applu |

Figure 3.1: Performance of No Speculation, Naive Speculation and Perfect Prediction

i

apsi

Comprass

fpppp

T

[
o

mSSksim |
SWIm |

] - = = -
@ = £ 5 = - x @ 7
I=] i — o [Ry = =

e = o &) = = [-

. — = = — — =1 ey

= = T} = = = =
2 = =

O no speculation @ naive speculation [l perfect

From Chrysos and Emer, ISCA'98

Clustering

Reg-rename &
Instr steer

r1 < r2+r3

5 &< r6+r7
r8 &< rl+r5

4 &rl+r2 > |p22 € p2l +p2 p43 & p42 + p4l

Q| Q|
e e
E<[E 8

40 regs in each cluster
p21 < p2 + p3 p4l €& p56 + p57

p42 < p21

rl is mapped to p21 and p42 — will influence steering
and instr commit — on average, only 8 replicated regs

2Bc-gskew Branch Predictor

Address

Address+History

44 KB; 2-cycle access; used in the Alpha 21464

Rules

* On a correct prediction
> If all agree, no update
> If they disagree, strengthen correct preds and
chooser

e On a misprediction
» update chooser and recompute the prediction
= on a correct prediction, strengthen correct
preds
= on a misprediction, update all preds

Runahead Mutlu et al., HPCA'03

Checkpointed
Regfile (32)
E—— Runahead
Cache
Rename -

When the oldest instruction is a cache miss, behave like it
causes a context-switch:
» checkpoint the committed registers, rename table, return
address stack, and branch history register
e assume a bogus value and start a new thread
e this thread cannot modify program state, but can prefetch

Memory Bottlenecks

» 128-entry window, real L2 -2 0.77 IPC
« 128-entry window, perfect L2 - 1.69
« 2048-entry window, real L2 - 1.15
» 2048-entry window, perfect L2 - 2.02

e 128-entry window, real L2, runahead - 0.94

Title

* Bullet

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

