
Lecture 14: Large Cache Design III

• Topics: Replacement policies, associativity,
cache networks, networking basics

1

LIN Qureshi et al., ISCA’06

• Memory level parallelism (MLP): number of misses that
simultaneously access memory; high MLP miss is
less expensive

• Replacement decision is a linear combination of recency
and MLP experienced when fetching that block

• MLP is estimated by tracking the number of outstanding
requests in the MSHR while waiting in the MSHR

• Can also use set dueling to decide between LRU and LIN

2

Scavenger Basu et al., MICRO’07

• Half the cache is used as a victim cache to retain blocks
that will likely be used in the distant future

• Counting bloom filters to track a block’s potential for
reuse and make replacement decisions in the victim cache

• Complex indexing and search in the victim cache

• Another paper (NuCache, HPCA’11) places blocks in
a large FIFO victim file if they were fetched by delinquent
PCs and the block has a short re-use distance

3

V-Way Cache Qureshi et al., ISCA’05

• Meant to reduce load imbalance among sets and compute
a better global replacement decision

• Tag store: every set has twice as many ways

• Data store: no correspondence with tag store; need forward
and reverse pointers

• In most cases, can replace any block; every block has a
2b saturating counter that is incremented on every access;
scan blocks (and decrement) until a zero counter is found;
continue scan on next replacement

4

ZCache Sanchez and Kozyrakis, MICRO’10

• Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped caches)

• When block A is brought in, it could replace one of four (say)
blocks B, C, D, E; but B could be made to reside in one
of three other locations (currently occupied by F, G, H); and
F could be moved to one of three other locations

• We thus get a tree of replacement options and we can pick
LRU among these options

• Every replacement requires multiple tag look-ups and data
block copies; worthwhile if you’re reducing off-chip accesses

5

Dead Block Prediction

• Can keep track of the number of accesses to a line during
its previous residence; the block is deemed to be dead
after that many accesses Kharbutli, Solihin, IEEE TOC’08

• To reduce noise, an access can be considered as a block’s
move to the MRU position Liu et al., MICRO 2008

• Earlier DBPs used a trace of PCs to capture when a block
has completed its use

• DBP is used for energy savings, replacement policies, and
cache bypassing

6

Distill Cache Qureshi, HPCA 2007

• Half the ways are traditional (LOC); when a block is
evicted from the LOC, only the touched words are stored
in a word-organized cache that has many narrow ways

• Incurs a fair bit of complexity (more tags for the WOC,
collection of word touches in L1s, blocks with holes, etc.)

• Does not need a predictor; actions are based on the block’s
behavior during current residence

• Useless word identification is orthogonal to cache
compression

7

Traditional Networks Huh et al. ICS’05, Beckmann MICRO’04

Example designs for contiguous L2 cache regions
8

Explorations for Optimality Muralimanohar et al., ISCA’07

9

Halo Network Jin et al., HPCA’07

• D-NUCA: Sets are distributed across columns;
Ways are distributed across rows 10

Halo Network

11

Nahalal Guz et al., CAL’07

12

Nahalal

• Block is initially placed in core’s private bank and then swapped into
the shared bank if frequently accessed by other cores

• Parallel search across all banks 13

Interconnection Networks

• Recall: fully connected network, arrays/rings, meshes/tori,
trees, butterflies, hypercubes

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree :
Number of links :
Pins per node :

Avg. routing distance:
Diameter :
Bisection bandwidth :
Switch complexity :

N
2d + 1
Nd
2wd

d(k-1)/2
d(k-1)
2wkd-1

Should we minimize or maximize dimension?
(2d + 1)2

(with no wraparound)

14

Routing

• Deterministic routing: given the source and destination,
there exists a unique route

• Adaptive routing: a switch may alter the route in order to
deal with unexpected events (faults, congestion) – more
complexity in the router vs. potentially better performance

• Example of deterministic routing: dimension order routing:
send packet along first dimension until destination co-ord
(in that dimension) is reached, then next dimension, etc.

15

Deadlock Example

Packets of message 1

Packets of message 2

Packets of message 3

Packets of message 4

4-way switch
Output ports

Each message is attempting to make a left turn – it must acquire an
output port, while still holding on to a series of input and output ports

Input ports

16

Deadlock-Free Proofs

• Number edges and show that all routes will traverse edges in increasing (or
decreasing) order – therefore, it will be impossible to have cyclic dependencies

• Example: k-ary 2-d array with dimension routing: first route along x-dimension,
then along y

1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0

17

18

19

18

17

16

17

Breaking Deadlock II

• Consider the eight possible turns in a 2-d array (note that
turns lead to cycles)

• By preventing just two turns, cycles can be eliminated

• Dimension-order routing disallows four turns

• Helps avoid deadlock even in adaptive routing

West-First North-Last Negative-First Can allow
deadlocks

18

Deadlock Avoidance with VCs

• VCs provide another way to number the links such that
a route always uses ascending link numbers

2 1 0
1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0

17

18

19

18

17

16

102 101 100

101 102 103

117

118

119

118

117

116 202 201 200

201 202 203

217

218

219

218

217

216

• Alternatively, use West-first routing on the
1st plane and cross over to the 2nd plane in
case you need to go West again (the 2nd

plane uses North-last, for example) 19

Packets/Flits

• A message is broken into multiple packets (each packet
has header information that allows the receiver to
re-construct the original message)

• A packet may itself be broken into flits – flits do not
contain additional headers

• Two packets can follow different paths to the destination
Flits are always ordered and follow the same path

• Such an architecture allows the use of a large packet
size (low header overhead) and yet allows fine-grained
resource allocation on a per-flit basis

20

Flow Control

• The routing of a message requires allocation of various
resources: the channel (or link), buffers, control state

• Bufferless: flits are dropped if there is contention for a
link, NACKs are sent back, and the original sender has
to re-transmit the packet

• Circuit switching: a request is first sent to reserve the
channels, the request may be held at an intermediate
router until the channel is available (hence, not truly
bufferless), ACKs are sent back, and subsequent
packets/flits are routed with little effort (good for bulk
transfers)

21

Buffered Flow Control

• A buffer between two channels decouples the resource
allocation for each channel – buffer storage is not as
precious a resource as the channel (perhaps, not so
true for on-chip networks)

• Packet-buffer flow control: channels and buffers are
allocated per packet
 Store-and-forward

 Cut-through

Time-Space diagrams
H B B B T

H B B B T
H B B B T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cycle

C
ha

nn
el 0

1
2
3

C
ha

nn
el H B B B T

H B B B T
H B B B T

0
1
2
3

22

Flit-Buffer Flow Control (Wormhole)

• Wormhole Flow Control: just like cut-through, but with
buffers allocated per flit (not channel)

• A head flit must acquire three resources at the next
switch before being forwarded:
 channel control state (virtual channel, one per input port)
 one flit buffer
 one flit of channel bandwidth

The other flits adopt the same virtual channel as the head
and only compete for the buffer and physical channel

 Consumes much less buffer space than cut-through
routing – does not improve channel utilization as another
packet cannot cut in (only one VC per input port) 23

Virtual Channel Flow Control

• Each switch has multiple virtual channels per phys. channel

• Each virtual channel keeps track of the output channel
assigned to the head, and pointers to buffered packets

• A head flit must allocate the same three resources in the
next switch before being forwarded

• By having multiple virtual channels per physical channel,
two different packets are allowed to utilize the channel and
not waste the resource when one packet is idle

24

Example

• Wormhole:

• Virtual channel:

A
B

B

A is going from Node-1 to Node-4; B is going from Node-0 to Node-5

Node-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

idleidle

A
B

ANode-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

B
A

Traffic Analogy:
B is trying to make
a left turn; A is trying
to go straight; there
is no left-only lane
with wormhole, but
there is one with VC

25

Buffer Management

• Credit-based: keep track of the number of free buffers in
the downstream node; the downstream node sends back
signals to increment the count when a buffer is freed;
need enough buffers to hide the round-trip latency

• On/Off: the upstream node sends back a signal when its
buffers are close to being full – reduces upstream
signaling and counters, but can waste buffer space

26

Router Pipeline

• Four typical stages:
 RC routing computation: the head flit indicates the VC that it

belongs to, the VC state is updated, the headers are examined
and the next output channel is computed (note: this is done for
all the head flits arriving on various input channels)
 VA virtual-channel allocation: the head flits compete for the

available virtual channels on their computed output channels
 SA switch allocation: a flit competes for access to its output

physical channel
 ST switch traversal: the flit is transmitted on the output channel

A head flit goes through all four stages, the other flits do nothing in the
first two stages (this is an in-order pipeline and flits can not jump
ahead), a tail flit also de-allocates the VC

27

Speculative Pipelines

• Perform VA and SA in parallel
• Note that SA only requires knowledge
of the output physical channel, not the VC

• If VA fails, the successfully allocated
channel goes un-utilized

RC VA
SA ST

-- SA ST

-- SA ST

-- SA ST

Cycle 1 2 3 4 5 6 7

Head flit

Body flit 1

Body flit 2

Tail flit

• Perform VA, SA, and ST in
parallel (can cause collisions
and re-tries)

• Typically, VA is the critical
path – can possibly perform
SA and ST sequentially

• Router pipeline latency is a greater bottleneck when there is little contention
• When there is little contention, speculation will likely work well!
• Single stage pipeline?

RC VA
SA ST

SA ST

SA ST

SA ST

28

Alpha 21364 Pipeline

RC T DW SA1
WrQ RE SA2

ST1 ST2 ECC

Routing

Transport/
Wire delay

Update of input unit state

Write to input queues

Switch allocation – local

Switch allocation – global

Switch traversal

Append ECC information

29

Recent Intel Router

Source: Partha Kundu, “On-Die Interconnects for Next-Generation CMPs”,
talk at On-Chip Interconnection Networks Workshop, Dec 2006

• Used for a 6x6 mesh
• 16 B, > 3 GHz
• Wormhole with VC

flow control

30

Recent Intel Router

Source: Partha Kundu, “On-Die Interconnects for Next-Generation CMPs”,
talk at On-Chip Interconnection Networks Workshop, Dec 2006 31

Recent Intel Router

Source: Partha Kundu, “On-Die Interconnects for Next-Generation CMPs”,
talk at On-Chip Interconnection Networks Workshop, Dec 2006 32

Data Points

• On-chip network’s power contribution
in RAW (tiled) processor: 36%
in network of compute-bound elements (Intel): 20%
in network of storage elements (Intel): 36%
bus-based coherence (Kumar et al. ’05): ~12%
Polaris (Intel) network: 28%
SCC (Intel) network: 10%

• Power contributors:
RAW: links 39%; buffers 31%; crossbar 30%
TRIPS: links 31%; buffers 35%; crossbar 33%
Intel: links 18%; buffers 38%; crossbar 29%; clock 13%

33

Title

• Bullet

34

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

