Lecture 12: Large Cache Design

« Topics: Shared vs. private, centralized vs. decentralized,
UCA vs. NUCA, recent papers

Shared Vs. Private

* SHR:

* SHR:

* SHR:

* SHR:

* PVT:

* PVT:

* PVT:

* PVT:

No replication of blocks

Dynamic allocation of space among cores

Low latency for shared data in LLC (no indirection thru directory)
No interconnect traffic or tag replication to maintain directories
More isolation and better quality-of-service

Lower wire traversal when accessing LLC hits, on average
Lower contention when accessing some shared data

No need for software support to maintain data proximity

Innovations for Private Caches: Cooperation

» Cooperative Caching, Chang and Sohi, ISCA06

* Prioritize replicated blocks for eviction with a given probability;

H (11

directory must track and communicate a block’s “replica” status

* “Singlet” blocks are sent to sibling caches upon eviction (probabilistic
one-chance forwarding); blocks are placed in LRU position of sibling,

Dynamic Spill-Receive

» Dynamic Spill-Receive, Qureshi, HPCA'09

* Instead of forcing a block upon a sibling, designate caches as Spillers
and Receivers and all cooperation is between Spillers and Receivers

* Every cache designates a few of its sets as being Spillers and a few of
Its sets as being Receivers (each cache picks different sets for this
profiling)

 Each private cache independently tracks the global miss rate on its
S/R sets (either by watching the bus or at the directory)

* The sets with the winning policy determine the policy for the rest of
that private cache — referred to as set-dueling

Innovations for Shared Caches: NUCA

Issues to be addressed for
Non-Uniform Cache Access:

* Mapping

 Migration

e Search

* Replication

Static and Dynamic NUCA

« Static NUCA (S-NUCA)
* The address index bits determine where the block
IS placed; sets are distributed across banks
= Page coloring can help here to improve locality

* Dynamic NUCA (D-NUCA)

= \Ways are distributed across banks

= Blocks are allowed to move between banks: need
some search mechanism

= Each core can maintain a partial tag structure so they
have an idea of where the data might be (complex!)

= Every possible bank is looked up and the search
propagates (either in series or in parallel) (complex!g

Beckmann and Wood, MICRO’04

CPU 2 CPU 3 o
L1|L1 L11L1 o Bankcluster Key
D§{I $ D91 $ (e]
- n ocal
: {f E*g Eiﬁg EHE % g : Inter
e
: Q Eﬁg % @ : Center
- ~Latency
o 65 cyc
© O
c
y o Data must be
52 |8 or placed close to the
=% — center-of-gravity
Latency— o = Ol SBlin o o A of requests
13-17cyc . :-; IE-)‘!$:.; IE’!1$|
O CPU7 CPUG
.

Alternative Layout

(a) CMP Substrate: 16 CPUs 8x8 Banks

PO

P1

P2

P3

P4

P5

P&

P7

P9

P8

From Huh et al., ICS’05:

» Paper also introduces the
notion of sharing degree

» A bank can be shared by
any number of cores
between N=1 and 16.

* Will need support for L2
coherence as well

Victim Replication, Zhang & Asanovic, ISCA'05

 Large shared L2 cache (each core has a local slice)

* On an L1 eviction, place the victim in local L2 slice (if there
are unused lines)

 The replication does not impact correctness as this core
IS still in the sharer list and will receive invalidations

* On an L1 miss, the local L2 slice is checked before fwding
the request to the correct slice

Page Coloring

Bank number with Bank number with
Page-to-Bank Set-interleaving

CACHE
VIEW
Y Tag\ /X(Set Index\\BIock oﬁs?

Ve N \ /
00000000000 (0000POOOOOGOO00 000009

\ N

os | N
VIEW Physical page number ~Page offse

10

Cho and Jin, MICRO'06

« Page coloring to improve proximity of data and computation
* Flexible software policies

« Has the benefits of S-NUCA (each address has a unigue
location and no search is required)

« Has the benefits of D-NUCA (page re-mapping can help
migrate data, although at a page granularity)

* Easily extends to multi-core and can easily mimic the
behavior of private caches

11

Page Coloring Example

C C C C

» Awasthi et al., HPCA'09 propose a mechanism for
hardware-based re-coloring of pages without requiring copies in
DRAM memory

* They also formalize the cost functions that determine the optimal

home for a page
12

R-NUCA, Hardavellas et al., ISCA'09

A page is categorized as “shared instruction”, “private data”,
or “shared data”; the TLB tracks this and prevents access
of a different kind

» Depending on the page type, the indexing function into the
shared cache is different
» “Private data” only looks up the local bank
» “Shared instruction” looks up a region of 4 banks
» “Shared data” looks up all the banks

13

Rotational Interleaving

 Can allow for arbitrary group sizes and a numbering that
distributes load

14

Basic Replacement Policies

* LRU: least recently used
* LFU: least frequently used (requires small saturating cntrs)

 pseudo-LRU: organize ways as a tree and track which
sub-tree was last accessed

* NRU: every block has a bit; the bit is reset to O upon touch;

when evicting, pick a block with its bit set to 1; if no
block has a 1, make every bit 1

15

Why the Basic Policies Fall

 Access types that pollute the cache without yielding too
many hits: streaming (no reuse), thrashing (distant reuse)

e Current hit rates are far short of those with an oracular
replacement policy (Belady): evict the block whose next
access Is most distant

* A large fraction of the cache is useless — blocks that have

serviced their last hit and are on the slow walk from MRU
to LRU

16

Insertion, Promotion, Victim Selection

* Instead of viewing the set as a recency stack, simply
view It as a priority list; in LRU, priority = recency

* When we fetch a block, it can be inserted in any position
In the list

* When a block is touched, it can be promoted up the priority
list in one of many ways

* When a block must be victimized, can select any block
(not necessarily the tail of the list)

17

MIP, LIP, BIP, and DIP Qureshi et al., ISCA07

* MIP:

* LIP:

* BIP:

* DIP:

MRU insertion policy (the baseline)

LRU insertion policy; assumes that blocks are useless
and should be kept around only if touched twice In
succession

Bimodal insertion policy; put most blocks at the tall;
with a small probability, insert at head; for thrashing
workloads, it can retain part of the working set and
yield hits on them

Dynamic insertion policy: pick the better of MIP and
BIP; decide with set-dueling

18

RRIP Jaleel et al., ISCA10

 Re-Reference Interval Prediction: in essence, insert blocks
near the end of the list than at the very end

* Implement with a multi-bit version of NRU: zero counter
on touch, evict block with max counter, else increment
every counter by one

* RRIP can be easily implemented by setting the initial
counter value to max-1 (does not require list management)

19

UCP Qureshi et al., MICRO'06

« Utility Based Cache Partitioning: partition ways among
cores based on estimated marginal utility of each additional
way to each core

« Each core maintains a shadow tag structure for the L2
cache that is populated only by requests from this core;
the core can now estimate hit rates if it had W ways of L2

 Every epoch, stats are collected and ways re-assigned

» Can reduce shadow tag storage overhead by using
set sampling and partial tags

20

TADIP Jaleel et al., PACT08

* Thread-aware DIP: each thread dynamically decides to
use MIP or BIP; threads that use BIP get a smaller
partition of cache

 Better than UCP because even for a thrashing workload,
part of the working set gets to stay in cache

* Need lots of set dueling monitors, but no need for extra
shadow tags

21

PIPP Xie and Loh, ISCA'09

* Promotion/Insertion pseudo partitioning: incoming blocks
are inserted in arbitrary positions in the list and on every
touch, they are gradually promoted up the list with a given
probability

* Applications with a large partition are inserted near the head
of the list and promoted aggressively

* Partition sizes are decided with marginal utility estimates

* In a few sets, a core gets to use N-1 ways and count hits
to each way; other threads only get to use the last way

22

Aggressor VT Liu and Yeung, PACT'09

* In an oracle policy, 80% of the evictions belong to a
thrashing aggressor thread

* Hence, if the LRU block belongs to an aggressor thread,
evict it; else, evict the aggressor thread’s LRU block with
a probability of either 99% or 50%

* At the start of each phase change, sample behavior for

that thread in one of three modes: non-aggr, aggr-99%,
aggr-50%; pick the best performing mode

23

Set Partitioning

 Can also partition sets among cores by assigning
page colors to each core

* Needs little hardware support, but must adapt to
dynamic arrival/exit of tasks

24

Overview

DIP: selectstheb

_——7BIP: Bimodal insertion policy
TADIP: selectsthebes Few insertions at head, most at tail

for each thread \
v RREIP: F'rDtlEltl'Il'ISlI'IE'IFI:jEFt'IDHr'lEElrtEl'Il'“ v

i

l
\ "'* N\
PIPP: Insertseachthread at different AGGRESSOR-VT:

positions+ probabilistic promotion Victimizesthe aggressar
threadwitha high probability

MIP: MRU insertion policy (traditignalapproach)
% LIP: LRU insertion policy

UCP: Partitionsways acrossthreads
based onmarginalutility

Highest priority € Priority stack of blocks in a set = Lowest priority

25

Title

* Bullet

26

