
1

Lecture 12: Large Cache Design

• Topics: Shared vs. private, centralized vs. decentralized,

UCA vs. NUCA, recent papers

2

Shared Vs. Private

• SHR: No replication of blocks

• SHR: Dynamic allocation of space among cores

• SHR: Low latency for shared data in LLC (no indirection thru directory)

• SHR: No interconnect traffic or tag replication to maintain directories

• PVT: More isolation and better quality-of-service

• PVT: Lower wire traversal when accessing LLC hits, on average

• PVT: Lower contention when accessing some shared data

• PVT: No need for software support to maintain data proximity

3

Innovations for Private Caches: Cooperation

• Cooperative Caching, Chang and Sohi, ISCA’06

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

D

• Prioritize replicated blocks for eviction with a given probability;

directory must track and communicate a block’s “replica” status

• “Singlet” blocks are sent to sibling caches upon eviction (probabilistic

one-chance forwarding); blocks are placed in LRU position of sibling

4

Dynamic Spill-Receive

• Dynamic Spill-Receive, Qureshi, HPCA’09

• Instead of forcing a block upon a sibling, designate caches as Spillers

and Receivers and all cooperation is between Spillers and Receivers

• Every cache designates a few of its sets as being Spillers and a few of

its sets as being Receivers (each cache picks different sets for this

profiling)

• Each private cache independently tracks the global miss rate on its

S/R sets (either by watching the bus or at the directory)

• The sets with the winning policy determine the policy for the rest of

that private cache – referred to as set-dueling

5

CPU

Issues to be addressed for

Non-Uniform Cache Access:

• Mapping

• Migration

• Search

• Replication

Innovations for Shared Caches: NUCA

6

Static and Dynamic NUCA

• Static NUCA (S-NUCA)

 The address index bits determine where the block

is placed; sets are distributed across banks

 Page coloring can help here to improve locality

• Dynamic NUCA (D-NUCA)

 Ways are distributed across banks

 Blocks are allowed to move between banks: need

some search mechanism

 Each core can maintain a partial tag structure so they

have an idea of where the data might be (complex!)

 Every possible bank is looked up and the search

propagates (either in series or in parallel) (complex!)

7

Beckmann and Wood, MICRO’04

Latency

13-17cyc

Latency

65 cyc

Data must be

placed close to the

center-of-gravity

of requests

Alternative Layout

From Huh et al., ICS’05:

• Paper also introduces the

notion of sharing degree

• A bank can be shared by

any number of cores

between N=1 and 16.

• Will need support for L2

coherence as well

9

Victim Replication, Zhang & Asanovic, ISCA’05

• Large shared L2 cache (each core has a local slice)

• On an L1 eviction, place the victim in local L2 slice (if there

are unused lines)

• The replication does not impact correctness as this core

is still in the sharer list and will receive invalidations

• On an L1 miss, the local L2 slice is checked before fwding

the request to the correct slice

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

10

Page Coloring

00000000000 000000000000000 000000

Block offsetSet IndexTag

Bank number with

Set-interleaving

Bank number with

Page-to-Bank

Page offsetPhysical page number

CACHE

VIEW

OS

VIEW

11

Cho and Jin, MICRO’06

• Page coloring to improve proximity of data and computation

• Flexible software policies

• Has the benefits of S-NUCA (each address has a unique

location and no search is required)

• Has the benefits of D-NUCA (page re-mapping can help

migrate data, although at a page granularity)

• Easily extends to multi-core and can easily mimic the

behavior of private caches

12

Page Coloring Example

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

• Awasthi et al., HPCA’09 propose a mechanism for

hardware-based re-coloring of pages without requiring copies in

DRAM memory

• They also formalize the cost functions that determine the optimal

home for a page

13

R-NUCA, Hardavellas et al., ISCA’09

• A page is categorized as “shared instruction”, “private data”,

or “shared data”; the TLB tracks this and prevents access

of a different kind

• Depending on the page type, the indexing function into the

shared cache is different

 “Private data” only looks up the local bank

 “Shared instruction” looks up a region of 4 banks

 “Shared data” looks up all the banks

14

Rotational Interleaving

• Can allow for arbitrary group sizes and a numbering that

distributes load

00 01 10 11

10 11 00 01

00 01 10 11

10 11 00 01

15

Basic Replacement Policies

• LRU: least recently used

• LFU: least frequently used (requires small saturating cntrs)

• pseudo-LRU: organize ways as a tree and track which

sub-tree was last accessed

• NRU: every block has a bit; the bit is reset to 0 upon touch;

when evicting, pick a block with its bit set to 1; if no

block has a 1, make every bit 1

16

Why the Basic Policies Fail

• Access types that pollute the cache without yielding too

many hits: streaming (no reuse), thrashing (distant reuse)

• Current hit rates are far short of those with an oracular

replacement policy (Belady): evict the block whose next

access is most distant

• A large fraction of the cache is useless – blocks that have

serviced their last hit and are on the slow walk from MRU

to LRU

17

Insertion, Promotion, Victim Selection

• Instead of viewing the set as a recency stack, simply

view it as a priority list; in LRU, priority = recency

• When we fetch a block, it can be inserted in any position

in the list

• When a block is touched, it can be promoted up the priority

list in one of many ways

• When a block must be victimized, can select any block

(not necessarily the tail of the list)

18

MIP, LIP, BIP, and DIP Qureshi et al., ISCA’07

• MIP: MRU insertion policy (the baseline)

• LIP: LRU insertion policy; assumes that blocks are useless

and should be kept around only if touched twice in

succession

• BIP: Bimodal insertion policy; put most blocks at the tail;

with a small probability, insert at head; for thrashing

workloads, it can retain part of the working set and

yield hits on them

• DIP: Dynamic insertion policy: pick the better of MIP and

BIP; decide with set-dueling

19

RRIP Jaleel et al., ISCA’10

• Re-Reference Interval Prediction: in essence, insert blocks

near the end of the list than at the very end

• Implement with a multi-bit version of NRU: zero counter

on touch, evict block with max counter, else increment

every counter by one

• RRIP can be easily implemented by setting the initial

counter value to max-1 (does not require list management)

20

UCP Qureshi et al., MICRO’06

• Utility Based Cache Partitioning: partition ways among

cores based on estimated marginal utility of each additional

way to each core

• Each core maintains a shadow tag structure for the L2

cache that is populated only by requests from this core;

the core can now estimate hit rates if it had W ways of L2

• Every epoch, stats are collected and ways re-assigned

• Can reduce shadow tag storage overhead by using

set sampling and partial tags

21

TADIP Jaleel et al., PACT’08

• Thread-aware DIP: each thread dynamically decides to

use MIP or BIP; threads that use BIP get a smaller

partition of cache

• Better than UCP because even for a thrashing workload,

part of the working set gets to stay in cache

• Need lots of set dueling monitors, but no need for extra

shadow tags

22

PIPP Xie and Loh, ISCA’09

• Promotion/Insertion pseudo partitioning: incoming blocks

are inserted in arbitrary positions in the list and on every

touch, they are gradually promoted up the list with a given

probability

• Applications with a large partition are inserted near the head

of the list and promoted aggressively

• Partition sizes are decided with marginal utility estimates

• In a few sets, a core gets to use N-1 ways and count hits

to each way; other threads only get to use the last way

23

Aggressor VT Liu and Yeung, PACT’09

• In an oracle policy, 80% of the evictions belong to a

thrashing aggressor thread

• Hence, if the LRU block belongs to an aggressor thread,

evict it; else, evict the aggressor thread’s LRU block with

a probability of either 99% or 50%

• At the start of each phase change, sample behavior for

that thread in one of three modes: non-aggr, aggr-99%,

aggr-50%; pick the best performing mode

24

Set Partitioning

• Can also partition sets among cores by assigning

page colors to each core

• Needs little hardware support, but must adapt to

dynamic arrival/exit of tasks

25

Overview

26

Title

• Bullet

