
1

Lecture 12: Large Cache Design

• Topics: Shared vs. private, centralized vs. decentralized,

UCA vs. NUCA, recent papers

2

Shared Vs. Private

• SHR: No replication of blocks

• SHR: Dynamic allocation of space among cores

• SHR: Low latency for shared data in LLC (no indirection thru directory)

• SHR: No interconnect traffic or tag replication to maintain directories

• PVT: More isolation and better quality-of-service

• PVT: Lower wire traversal when accessing LLC hits, on average

• PVT: Lower contention when accessing some shared data

• PVT: No need for software support to maintain data proximity

3

Innovations for Private Caches: Cooperation

• Cooperative Caching, Chang and Sohi, ISCA’06

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

D

• Prioritize replicated blocks for eviction with a given probability;

directory must track and communicate a block’s “replica” status

• “Singlet” blocks are sent to sibling caches upon eviction (probabilistic

one-chance forwarding); blocks are placed in LRU position of sibling

4

Dynamic Spill-Receive

• Dynamic Spill-Receive, Qureshi, HPCA’09

• Instead of forcing a block upon a sibling, designate caches as Spillers

and Receivers and all cooperation is between Spillers and Receivers

• Every cache designates a few of its sets as being Spillers and a few of

its sets as being Receivers (each cache picks different sets for this

profiling)

• Each private cache independently tracks the global miss rate on its

S/R sets (either by watching the bus or at the directory)

• The sets with the winning policy determine the policy for the rest of

that private cache – referred to as set-dueling

5

CPU

Issues to be addressed for

Non-Uniform Cache Access:

• Mapping

• Migration

• Search

• Replication

Innovations for Shared Caches: NUCA

6

Static and Dynamic NUCA

• Static NUCA (S-NUCA)

 The address index bits determine where the block

is placed; sets are distributed across banks

 Page coloring can help here to improve locality

• Dynamic NUCA (D-NUCA)

 Ways are distributed across banks

 Blocks are allowed to move between banks: need

some search mechanism

 Each core can maintain a partial tag structure so they

have an idea of where the data might be (complex!)

 Every possible bank is looked up and the search

propagates (either in series or in parallel) (complex!)

7

Beckmann and Wood, MICRO’04

Latency

13-17cyc

Latency

65 cyc

Data must be

placed close to the

center-of-gravity

of requests

Alternative Layout

From Huh et al., ICS’05:

• Paper also introduces the

notion of sharing degree

• A bank can be shared by

any number of cores

between N=1 and 16.

• Will need support for L2

coherence as well

9

Victim Replication, Zhang & Asanovic, ISCA’05

• Large shared L2 cache (each core has a local slice)

• On an L1 eviction, place the victim in local L2 slice (if there

are unused lines)

• The replication does not impact correctness as this core

is still in the sharer list and will receive invalidations

• On an L1 miss, the local L2 slice is checked before fwding

the request to the correct slice

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

10

Page Coloring

00000000000 000000000000000 000000

Block offsetSet IndexTag

Bank number with

Set-interleaving

Bank number with

Page-to-Bank

Page offsetPhysical page number

CACHE

VIEW

OS

VIEW

11

Cho and Jin, MICRO’06

• Page coloring to improve proximity of data and computation

• Flexible software policies

• Has the benefits of S-NUCA (each address has a unique

location and no search is required)

• Has the benefits of D-NUCA (page re-mapping can help

migrate data, although at a page granularity)

• Easily extends to multi-core and can easily mimic the

behavior of private caches

12

Page Coloring Example

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

• Awasthi et al., HPCA’09 propose a mechanism for

hardware-based re-coloring of pages without requiring copies in

DRAM memory

• They also formalize the cost functions that determine the optimal

home for a page

13

R-NUCA, Hardavellas et al., ISCA’09

• A page is categorized as “shared instruction”, “private data”,

or “shared data”; the TLB tracks this and prevents access

of a different kind

• Depending on the page type, the indexing function into the

shared cache is different

 “Private data” only looks up the local bank

 “Shared instruction” looks up a region of 4 banks

 “Shared data” looks up all the banks

14

Rotational Interleaving

• Can allow for arbitrary group sizes and a numbering that

distributes load

00 01 10 11

10 11 00 01

00 01 10 11

10 11 00 01

15

Basic Replacement Policies

• LRU: least recently used

• LFU: least frequently used (requires small saturating cntrs)

• pseudo-LRU: organize ways as a tree and track which

sub-tree was last accessed

• NRU: every block has a bit; the bit is reset to 0 upon touch;

when evicting, pick a block with its bit set to 1; if no

block has a 1, make every bit 1

16

Why the Basic Policies Fail

• Access types that pollute the cache without yielding too

many hits: streaming (no reuse), thrashing (distant reuse)

• Current hit rates are far short of those with an oracular

replacement policy (Belady): evict the block whose next

access is most distant

• A large fraction of the cache is useless – blocks that have

serviced their last hit and are on the slow walk from MRU

to LRU

17

Insertion, Promotion, Victim Selection

• Instead of viewing the set as a recency stack, simply

view it as a priority list; in LRU, priority = recency

• When we fetch a block, it can be inserted in any position

in the list

• When a block is touched, it can be promoted up the priority

list in one of many ways

• When a block must be victimized, can select any block

(not necessarily the tail of the list)

18

MIP, LIP, BIP, and DIP Qureshi et al., ISCA’07

• MIP: MRU insertion policy (the baseline)

• LIP: LRU insertion policy; assumes that blocks are useless

and should be kept around only if touched twice in

succession

• BIP: Bimodal insertion policy; put most blocks at the tail;

with a small probability, insert at head; for thrashing

workloads, it can retain part of the working set and

yield hits on them

• DIP: Dynamic insertion policy: pick the better of MIP and

BIP; decide with set-dueling

19

RRIP Jaleel et al., ISCA’10

• Re-Reference Interval Prediction: in essence, insert blocks

near the end of the list than at the very end

• Implement with a multi-bit version of NRU: zero counter

on touch, evict block with max counter, else increment

every counter by one

• RRIP can be easily implemented by setting the initial

counter value to max-1 (does not require list management)

20

UCP Qureshi et al., MICRO’06

• Utility Based Cache Partitioning: partition ways among

cores based on estimated marginal utility of each additional

way to each core

• Each core maintains a shadow tag structure for the L2

cache that is populated only by requests from this core;

the core can now estimate hit rates if it had W ways of L2

• Every epoch, stats are collected and ways re-assigned

• Can reduce shadow tag storage overhead by using

set sampling and partial tags

21

TADIP Jaleel et al., PACT’08

• Thread-aware DIP: each thread dynamically decides to

use MIP or BIP; threads that use BIP get a smaller

partition of cache

• Better than UCP because even for a thrashing workload,

part of the working set gets to stay in cache

• Need lots of set dueling monitors, but no need for extra

shadow tags

22

PIPP Xie and Loh, ISCA’09

• Promotion/Insertion pseudo partitioning: incoming blocks

are inserted in arbitrary positions in the list and on every

touch, they are gradually promoted up the list with a given

probability

• Applications with a large partition are inserted near the head

of the list and promoted aggressively

• Partition sizes are decided with marginal utility estimates

• In a few sets, a core gets to use N-1 ways and count hits

to each way; other threads only get to use the last way

23

Aggressor VT Liu and Yeung, PACT’09

• In an oracle policy, 80% of the evictions belong to a

thrashing aggressor thread

• Hence, if the LRU block belongs to an aggressor thread,

evict it; else, evict the aggressor thread’s LRU block with

a probability of either 99% or 50%

• At the start of each phase change, sample behavior for

that thread in one of three modes: non-aggr, aggr-99%,

aggr-50%; pick the best performing mode

24

Set Partitioning

• Can also partition sets among cores by assigning

page colors to each core

• Needs little hardware support, but must adapt to

dynamic arrival/exit of tasks

25

Overview

26

Title

• Bullet

