
1

Lecture 10: Transactional Memory

• Topics: lazy and eager TM implementations, TM pathologies

2

Basic Implementation – Lazy, Lazy

• Writes can be cached (can’t be written to memory) – if the

block needs to be evicted, flag an overflow (abort transaction

for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for

each transaction

• When another transaction commits, compare its write set

with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast

write-set (transactions can commit in parallel if their

write-sets do not intersect)

3

Lazy Overview

Topics:

• Commit order

• Overheads

• Wback, WAW

• Overflow

• Parallel Commit

• Hiding Delay

• I/O

• Deadlock, Livelock, Starvation

• Signatures

C

P

R W

C

P

R W

C

P

R W

C

P

R W

M A

4

“Lazy” Implementation (Partially Based on TCC)

• An implementation for a small-scale multiprocessor with

a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

5

Handling Reads/Writes

• When a transaction issues a read, fetch the block in

read-only mode (if not already in cache) and set the

rd-bit for that cache line

• When a transaction issues a write, fetch that block in

read-only mode (if not already in cache), set the wr-bit

for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must

be aborted (or must rely on some software mechanism

to handle saving overflowed data) (or must acquire

commit permissions)

6

Commit Process

• When a transaction reaches its end, it must now make

its writes permanent

• A central arbiter is contacted (easy on a bus-based system),

the winning transaction holds on to the bus until all written

cache line addresses are broadcast (this is the commit)

(need not do a writeback until the line is evicted or written

again – must simply invalidate other readers of these lines)

• When another transaction (that has not yet begun to commit)

sees an invalidation for a line in its rd-set, it realizes its

lack of atomicity and aborts (clears its rd- and wr-bits and

re-starts)

7

Miscellaneous Properties

• While a transaction is committing, other transactions can

continue to issue read requests

• Writeback after commit can be deferred until the next

write to that block

• Bloom filter signatures can be used to track blocks that

have overflowed out of cache

• If we’re tracking info at block granularity, (for various

reasons), a conflict between write-sets must force an abort

8

Summary of Properties

• Lazy versioning: changes are made locally – the “master copy” is

updated only at the end of the transaction; on an overflow, the new version

is saved in a log

• Lazy conflict detection: we are checking for conflicts only when one of

the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and

reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations

for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will

commit successfully; starvation is possible – need additional mechanisms

9

Parallel Commits

• Each memory node has a token. Two transactions can commit in

parallel if they deal with different data blocks, i.e., they need different

tokens. Tokens are acquired in increasing order. (Pugsley et al., PACT’08)

10

“Eager” Overview

Topics:

• Logs

• Log optimization

• Conflict examples

• Handling deadlocks

• Sticky scenarios

• Aborts/commits/parallelism

C

Dir

P

R W
C

Dir

P

R W
C

Dir

P

R W
C

Dir

P

R W

Scalable Non-broadcast

Interconnect

11

“Eager” Implementation (Based Primarily on LogTM)

• A write is made permanent immediately (we do not wait

until the end of the transaction)

• Can’t lose the old value (in case this transaction is

aborted) – hence, before the write, we copy the old

value into a log (the log is some space in virtual memory

-- the log itself may be in cache, so not too expensive)

This is eager versioning

12

Versioning

• Every overflowed write first requires a read and a write to

log the old value – the log is maintained in virtual memory

and will likely be found in cache

• Aborts are uncommon – typically only when the

contention manager kicks in on a potential deadlock; the

logs are walked through in reverse order

• If a block is already marked as being logged (wr-set), the

next write by that transaction can avoid the re-log

• Log writes can be placed in a write buffer to reduce

contention for L1 cache ports

13

Conflict Detection and Resolution

• Since Transaction-A’s writes are made permanent

rightaway, it is possible that another Transaction-B’s

rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has

reached its end, hence, eager conflict detection): two

transactions handling the same cache line and at least

one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to

Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has

committed and can hand off the latest cache line to B

 neither transaction needs to abort

14

Deadlocks

• Can lead to deadlocks: each transaction is waiting for the

other to finish

• Need a separate (hw/sw) contention manager to detect

such deadlocks and force one of them to abort

Tr-A Tr-B

write X write Y

… …

read Y read X

• Alternatively, every transaction maintains an “age” and a young

transaction aborts and re-starts if it is keeping an older transaction

waiting and itself receives a nack from an older transaction

15

Block Replacement

• If a block in a transaction’s rd/wr-set is evicted, the data

is written back to memory if necessary, but the directory

continues to maintain a “sticky” pointer to that node

(subsequent requests have to confirm that the transaction

has committed before proceeding)

• The sticky pointers are lazily removed over time (commits

continue to be fast); if a transaction receives a request for

a block that is not in its cache and if the transaction has

not overflowed, then we know that the sticky pointer can

be removed; can also maintain signatures to track evicted

lines

16

Paper on TM Pathologies (ISCA’08)

• LL: lazy versioning, lazy conflict detection, committing

transaction wins conflicts

• EL: lazy versioning, eager conflict detection, requester

succeeds and others abort

• EE: eager versioning, eager conflict detection, requester

stalls

17

• Two conflicting transactions that

keep aborting each other

• Can do exponential back-off to

handle livelock

• Fixable by doing requester stalls?

• Fixable by only letting the older transaction win

• VM: any

• CD: eager

• CR: requester wins

Pathology 1: Friendly Fire

18

• A writer has to wait for the reader

to finish – but if more readers keep

showing up, the writer is starved

(note that the directory allows new

readers to proceed by just adding

them to the list of sharers)

Can allow requester wins for a potential starved writer

• VM: any

• CD: eager

• CR: requester stalls

Pathology 2: Starving Writer

19

• If there’s a single commit token,

transaction commit is serialized

• There are ways to alleviate this problem

• VM: lazy

• CD: lazy

• CR: any

Pathology 3: Serialized Commit

20

• A transaction is stalling on another

transaction that ultimately aborts and

takes a while to reinstate old values

-- no good workaround

• VM: any

• CD: eager

• CR: requester stalls

Pathology 4: Futile Stall

21

• Small successful transactions can

keep aborting a large transaction

• The large transaction can eventually

grab the token and not release it

until after it commits

• VM: lazy

• CD: lazy

• CR: committer wins

Pathology 5: Starving Elder

22

• A number of similar (conflicting)

transactions execute together – one

wins, the others all abort – shortly,

these transactions all return and

repeat the process

Can do exponential back-off to reduce wasted work

• VM: lazy

• CD: lazy

• CR: committer wins

Pathology 6: Restart Convoy

23

• If two transactions both read the

same object and then both decide to

write it, a deadlock is created

• Exacerbated by the Futile Stall pathology

• Solution?

• VM: eager

• CD: eager

• CR: requester stalls

Pathology 7: Dueling Upgrades

24

Four Extensions

• Predictor: predict if the read will soon be followed by a

write and acquire write permissions aggressively

• Hybrid: if a transaction believes it is a Starving Writer, it

can force other readers to abort; for everything else, use

requester stalls

• Timestamp: In the EL case, requester wins only if it is the

older transaction (handles Friendly Fire pathology)

• Backoff: in the LL case, aborting transactions invoke

exponential back-off to prevent convoy formation

25

Title

• Bullet

