
1

Lecture 9: Directory Protocol, TM

• Topics: corner cases in directory protocols, coherence

vs. message-passing, TM intro

2

Handling Write Requests

• The home node must invalidate all sharers and all

invalidations must be acked (to the requestor), the

requestor is informed of the number of invalidates to expect

• Actions taken for each state:

 shared: invalidates are sent, state is changed to

excl, data and num-sharers are sent to requestor,

the requestor cannot continue until it receives all acks

(Note: the directory does not maintain busy state,

subsequent requests will be fwded to new owner

and they must be buffered until the previous write

has completed)

3

Handling Writes II

• Actions taken for each state:

 unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?

 exclusive: is there a problem if the request was an

upgrade? In case of a read-exclusive: directory is

set to busy, speculative reply is sent to requestor,

invalidate is sent to owner, owner sends data to

requestor (if dirty), and a “transfer of ownership”

message (no data) to home to change out of busy

 busy: the request is NACKed and the requestor

must try again

4

Handling Write-Back

• When a dirty block is replaced, a writeback is generated

and the home sends back an ack

• Can the directory state be shared when a writeback is

received by the directory?

• Actions taken for each directory state:

 exclusive: change directory state to unowned and

send an ack

 busy: a request and the writeback have crossed

paths: the writeback changes directory state to

shared or excl (depending on the busy state),

memory is updated, and home sends data to

requestor, the intervention request is dropped

5

Writeback Cases

P1 P2

D3

E: P1

Wback

This is the “normal” case

D3 sends back an Ack

Ack

6

Writeback Cases

P1 P2

D3

E: P1

busy

Wback

If someone else has the block in exclusive, D3 moves to busy

If Wback is received, D3 serves the requester

If we didn’t use busy state when transitioning from E:P1 to E:P2,

D3 may not have known who to service

(since ownership may have been passed on to P3 and P4…)

(although, this problem can be solved by NACKing the Wback

and having P1 buffer its “strange” intervention requests…

this could lead to other corner cases…)

Fwd Rd or Wr

7

Writeback Cases

P1 P2

D3

E: P1

busy

Transfer

ownership

If Wback is from new requester, D3 sends back a NACK

Floating unresolved messages are a problem

Alternatively, can accept the Wback and put D3 in some new busy state

Conclusion: could have got rid of busy state between E:P1 E:P2, but

with Wback ACK/NACK and other buffering

could have kept the busy state between E:P1 E:P2, could

have got rid of ACK/NACK, but need one new busy state

Fwd Wback

Data

8

Future Scalable Designs

• Intel’s Single Cloud Computer (SCC): an example prototype

• No support for hardware cache coherence

• Programmer can write shared-memory apps by marking

pages as uncacheable or L1-cacheable, but forcing memory

flushes to propagate results

• Primarily intended for message-passing apps

• Each core runs a version of Linux

9

Scalable Cache Coherence

• Will future many-core chips forego hardware cache

coherence in favor of message-passing or sw-managed

cache coherence?

• It’s the classic programmer-effort vs. hw-effort trade-off …

traditionally, hardware has won (e.g. ILP extraction)

• Two questions worth answering: will motivated programmers

prefer message-passing?, is scalable hw cache coherence

do-able?

10

Message Passing

• Message passing can be faster and more energy-efficient

• Only required data is communicated: good for energy and

reduces network contention

• Data can be sent before it is required (push semantics;

cache coherence is pull semantics and frequently requires

indirection to get data)

• Downsides: more software stack layers and more memory

hierarchy layers must be traversed, and.. more

programming effort

11

Scalable Directory Coherence

• Note that the protocol itself need not be changed

• If an application randomly accesses data with zero locality:

 long latencies for data communication

 also true for message-passing apps

• If there is locality and page coloring is employed, the directory

and data-sharers will often be in close proximity

• Does hardware overhead increase? See examples in last class…

the overhead is ~2-10% and sharing can be tracked at coarse

granularity… hierarchy can also be employed, with snooping-based

coherence among a group of nodes

12

Transactions

• Access to shared variables is encapsulated within

transactions – the system gives the illusion that the

transaction executes atomically – hence, the programmer

need not reason about other threads that may be running

in parallel with the transaction

Conventional model: TM model:

… …

lock(L1); trans_begin();

access shared vars access shared vars

unlock(L1); trans_end();

… …

13

Transactions

• Transactional semantics:

 when a transaction executes, it is as if the rest of the

system is suspended and the transaction is in isolation

 the reads and writes of a transaction happen as if they

are all a single atomic operation

 if the above conditions are not met, the transaction

fails to commit (abort) and tries again

transaction begin

read shared variables

arithmetic

write shared variables

transaction end

14

Why are Transactions Better?

• High performance with little programming effort

 Transactions proceed in parallel most of the time

if the probability of conflict is low (programmers need

not precisely identify such conflicts and find

work-arounds with say fine-grained locks)

 No resources being acquired on transaction start;

lesser fear of deadlocks in code

 Composability

15

Example

Producer-consumer relationships – producers place tasks at the tail of

a work-queue and consumers pull tasks out of the head

Enqueue Dequeue

transaction begin transaction begin

if (tail == NULL) if (head->next == NULL)

update head and tail update head and tail

else else

update tail update head

transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be

updated – with transactions, enqueue and dequeue can proceed in

parallel – transactions will be aborted only if the queue is nearly empty

16

Example

Is it possible to have a transactional program that deadlocks,

but the program does not deadlock when using locks?

flagA = flagB = false;

thr-1 thr-2

lock(L1) lock(L2)

while (!flagA) {}; flagA = true;

flagB = true; while (!flagB) {};

* *

unlock(L1) unlock(L2)

• Somewhat contrived

• The code implements a barrier before getting to *
• Note that we are using different lock variables

17

Atomicity

• Blindly replacing locks-unlocks with tr-begin-end may

occasionally result in unexpected behavior

• The primary difference is that:

 transactions provide atomicity with every other transaction

 locks provide atomicity with every other code segment

that locks the same variable

• Hence, transactions provide a “stronger” notion of

atomicity – not necessarily worse for performance or

correctness, but certainly better for programming ease

18

Other Constructs

• Retry: abandon transaction and start again

• OrElse: Execute the other transaction if one aborts

• Weak isolation: transactional semantics enforced only

between transactions

• Strong isolation: transactional semantics enforced beween

transactions and non-transactional code

19

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will

fit in cache

• Transactions often commit successfully – less than 10%

are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!

 fast commits, can have slightly slow aborts, can have

slightly slow overflow mechanisms

20

Design Space

• Data Versioning

 Eager: based on an undo log

 Lazy: based on a write buffer

Typically, versioning is done in cache;

The above two are variants that handle overflow

• Conflict Detection

 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)

 Pessimistic detection: every read/write checks for

conflicts

21

Title

• Bullet

