
1

Lecture 8: Snooping and Directory Protocols

• Topics: split-transaction implementation details, directory

implementations (memory- and cache-based)

2

Split Transaction Bus

• So far, we have assumed that a coherence operation

(request, snoops, responses, update) happens atomically

• What would it take to implement the protocol correctly

while assuming a split transaction bus?

• Split transaction bus: a cache puts out a request, releases

the bus (so others can use the bus), receives its response

much later

• Assumptions:

 only one request per block can be outstanding

 separate lines for addr (request) and data (response)

3

Split Transaction Bus

Proc 1

Cache

Proc 2

Cache

Proc 3

Cache

Request lines

Response lines

BufBufBuf

4

Design Issues

• Could be a 3-stage pipeline: request/snoop/response or

(much simpler) 2-stage pipeline: request-snoop/response

(note that the response is slowest and needs to be hidden)

• Buffers track the outstanding transactions; buffers are

identical in each core; an entry is freed when the response

is seen; the next operation uses any free entry; every bus

operation carries the buffer entry number as a tag

• Must check the buffer before broadcasting a new operation;

must ensure only one outstanding operation per block

• What determines the write order – requests or responses?

5

Design Issues II

• What happens if processor-A is arbitrating for the bus and

witnesses another bus transaction for the same address or

same buffer entry?

• What if processor-A was trying to do an upgrade?

• What if processor-A was trying to do a read and there is

already a matching read in the request table?

• Processor-cache handshake: after acquiring the block in

excl state, the processor must complete the write before

handing the block to other writers; else, there’s a livelock

6

Directory-Based Protocol

• For each block, there is a centralized “directory” that

maintains the state of the block in different caches

• The directory is co-located with the corresponding memory

• Requests and replies on the interconnect are no longer

seen by everyone – the directory serializes writes

P

C

Mem CADir

P

C

Mem CADir

7

Definitions

• Home node: the node that stores memory and directory

state for the cache block in question

• Dirty node: the node that has a cache copy in modified state

• Owner node: the node responsible for supplying data

(usually either the home or dirty node)

• Also, exclusive node, local node, requesting node, etc.

P

C

Mem CADir

P

C

Mem CADir

8

Directory Organizations

• Centralized Directory: one fixed location – bottleneck!

• Flat Directories: directory info is in a fixed place,

determined by examining the address – can be further

categorized as memory-based or cache-based

• Hierarchical Directories: the processors are organized as a

logical tree structure and each parent keeps track of which

of its immediate children has a copy of the block – more

searching, can exploit locality

9

Flat Memory-Based Directories

• Directory is associated with memory and stores info

for all cached copies

• A presence vector stores a bit for every processor, for

every memory block – the overhead is a function of

memory/block size and #processors

• Reducing directory overhead:

10

Flat Memory-Based Directories

• Directory is associated with memory and stores info

for all cache copies

• A presence vector stores a bit for every processor, for

every memory block – the overhead is a function of

memory/block size and #processors

• Reducing directory overhead:

 Width: pointers (keep track of processor ids of sharers)

(need overflow strategy), organize processors into

clusters

 Height: increase block size, track info only for blocks

that are cached (note: cache size << memory size)

11

Flat Cache-Based Directories

• The directory at the memory home node only stores a

pointer to the first cached copy – the caches store

pointers to the next and previous sharers (a doubly linked

list)

Main memory

Cache 7 Cache 3 Cache 26

12

Flat Cache-Based Directories

• The directory at the memory home node only stores a

pointer to the first cached copy – the caches store

pointers to the next and previous sharers (a doubly linked

list)

• Potentially lower storage, no bottleneck for network traffic

• Invalidates are now serialized (takes longer to acquire

exclusive access), replacements must update linked list,

must handle race conditions while updating list

13

Flat Memory-Based Directories

Main memory

Cache 1 Cache 2 Cache 64

…

…

Block size = 128 B

Memory in each node = 1 GB

Cache in each node = 1 MB

For 64 nodes and 64-bit directory,

Directory size = 4 GB

For 64 nodes and 12-bit directory,

Directory size = 0.75 GB

14

Flat Cache-Based Directories

Main memory…

Block size = 128 B

Memory in each node = 1 GB

Cache in each node = 1 MB

6-bit storage in DRAM for each block;

DRAM overhead = 0.375 GB

12-bit storage in SRAM for each block;

SRAM overhead = 0.75 MB

Cache 7 Cache 3 Cache 26

15

Flat Memory-Based Directories

L2 cache

L1 Cache 1 L1 Cache 2 L1 Cache 64

…

…

Block size = 64 B

L3 cache in each node = 2 MB

L2 Cache in each node = 256 KB

For 64 nodes and 64-bit directory,

Directory size = 16 MB

For 64 nodes and 12-bit directory,

Directory size = 3 MB

16

Flat Cache-Based Directories

Main memory…

6-bit storage in L3 for each block;

L3 overhead = 1.5 MB

12-bit storage in L2 for each block;

L2 overhead = 384 KB

Cache 7 Cache 3 Cache 26

Block size = 64 B

L3 cache in each node = 2 MB

L2 Cache in each node = 256 KB

17

SGI Origin 2000

• Flat memory-based directory protocol

• Uses a bit vector directory representation

• Two processors per node – combining multiple processors

in a node reduces cost

P

L2

CA

M/D

P

L2

Interconnect

18

Directory Structure

• The system supports either a 16-bit or 64-bit directory

(fixed cost); for small systems, the directory works as a

full bit vector representation

• Seven states, of which 3 are stable

• For larger systems, a coarse vector is employed – each

bit represents p/64 nodes

• State is maintained for each node, not each processor –

the communication assist broadcasts requests to both

processors

19

Handling Reads

• SGI Origin 2000 case study: directory states: 3 stable states,

3 busy states, and 1 poison state; cache states: invalid,

shared, excl-clean, excl-modified

• When the home receives a read request, it looks up

memory (speculative read) and directory in parallel

• Actions taken for each directory state:

 shared or unowned: data is returned to requestor, state

is changed to excl if there are no other sharers

 busy: a NACK is sent to the requestor

 exclusive: home is not the owner, request is fwded

to owner, owner sends data to requestor and home

20

Inner Details of Handling the Read

• The block is in exclusive state – memory may or may not

have a clean copy – it is speculatively read anyway

• The directory state is set to busy-exclusive and the

presence vector is updated

• In addition to fwding the request to the owner, the memory

copy is speculatively forwarded to the requestor

 Case 1: excl-dirty: owner sends block to requestor

and home, the speculatively sent data is over-written

 Case 2: excl-clean: owner sends an ack (without data)

to requestor and home, requestor waits for this ack

before it moves on with speculatively sent data

21

Inner Details II

• Why did we send the block speculatively to the requestor

if it does not save traffic or latency?

 the R10K cache controller is programmed to not

respond with data if it has a block in excl-clean state

 when an excl-clean block is replaced from the cache,

the directory need not be updated – hence, directory

cannot rely on the owner to provide data and

speculatively provides data on its own

22

Handling Write Requests

• The home node must invalidate all sharers and all

invalidations must be acked (to the requestor), the

requestor is informed of the number of invalidates to expect

• Actions taken for each state:

 shared: invalidates are sent, state is changed to

excl, data and num-sharers are sent to requestor,

the requestor cannot continue until it receives all acks

(Note: the directory does not maintain busy state,

subsequent requests will be fwded to new owner

and they must be buffered until the previous write

has completed)

23

Handling Writes II

• Actions taken for each state:

 unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?

 exclusive: is there a problem if the request was an

upgrade? In case of a read-exclusive: directory is

set to busy, speculative reply is sent to requestor,

invalidate is sent to owner, owner sends data to

requestor (if dirty), and a “transfer of ownership”

message (no data) to home to change out of busy

 busy: the request is NACKed and the requestor

must try again

24

Handling Write-Back

• When a dirty block is replaced, a writeback is generated

and the home sends back an ack

• Can the directory state be shared when a writeback is

received by the directory?

• Actions taken for each directory state:

 exclusive: change directory state to unowned and

send an ack

 busy: a request and the writeback have crossed

paths: the writeback changes directory state to

shared or excl (depending on the busy state),

memory is updated, and home sends data to

requestor, the intervention request is dropped

25

Writeback Cases

P1 P2

D3

E: P1

Wback

This is the “normal” case

D3 sends back an Ack

Ack

26

Writeback Cases

P1 P2

D3

E: P1

busy

Wback

If someone else has the block in exclusive, D3 moves to busy

If Wback is received, D3 serves the requester

If we didn’t use busy state when transitioning from E:P1 to E:P2,

D3 may not have known who to service

(since ownership may have been passed on to P3 and P4…)

(although, this problem can be solved by NACKing the Wback

and having P1 buffer its “strange” intervention requests…

this could lead to other corner cases…)

Fwd Rd or Wr

27

Writeback Cases

P1 P2

D3

E: P1

busy

Transfer

ownership

If Wback is from new requester, D3 sends back a NACK

Floating unresolved messages are a problem

Alternatively, can accept the Wback and put D3 in some new busy state

Conclusion: could have got rid of busy state between E:P1  E:P2, but

with Wback ACK/NACK and other buffering

could have kept the busy state between E:P1  E:P2, could

have got rid of ACK/NACK, but need one new busy state

Fwd Wback

Data

28

Title

• Bullet

