Lecture 6: Reliability, PCM

• Topics: handling DRAM errors, handling PCM errors, handling PCM writes
Chipkill

- Chipkill correct systems can withstand failure of an entire DRAM chip

- For chipkill correctness
 - the 72-bit word must be spread across 72 DRAM chips
 - or, a 13-bit word (8-bit data and 5-bit ECC) must be spread across 13 DRAM chips
RAID-like DRAM Designs

- DRAM chips do not have built-in error detection

- Can employ a 9-chip rank with ECC to detect and recover from a single error; in case of a multi-bit error, rely on a second tier of error correction

- Can do parity across DIMMs (needs an extra DIMM); use ECC within a DIMM to recover from 1-bit errors; use parity across DIMMs to recover from multi-bit errors in 1 DIMM

- Reads are cheap (must only access 1 DIMM); writes are expensive (must read and write 2 DIMMs)

Used in some HP servers
RAID-like DRAM

• Add a checksum to every row in DRAM; verified at the memory controller

• Adds area overhead, but provides self-contained error detection

• When a chip fails, can re-construct data by examining another parity DRAM chip

• Can control overheads by having checksum for a large row or one parity chip for many data chips

• Writes are again problematic
Virtualized ECC

• Also builds a two-tier error protection scheme, but does the second tier in software

• The second-tier codes are stored in the regular physical address space (not specialized DRAM chips); software has flexibility in terms of the types of codes to use and the types of pages that are protected

• Reads are cheap; writes are expensive as usual; but, the second-tier codes can now be cached; greatly helps reduce the number of DRAM writes

• Requires a 144-bit datapath (increases overfetch)
LoT-ECC

- Use checksums to detect errors and parity codes to fix
- Requires access of only 9 DRAM chips per read, but the storage overhead grows to 26%
Phase Change Memory

• Emerging NVM technology that can replace Flash and DRAM

• Much higher density; much better scalability; can do multi-level cells

• When materials (GST) are heated (with electrical pulses) and then cooled, they form either crystalline or amorphous materials depending on the intensity and duration of the pulses; crystalline materials have low resistance (1 state) and amorphous materials have high resistance (0 state)

• Non-volatile, fast reads (~50ns), slow and energy-hungry writes; limited lifetime (~10^8 writes per cell), no leakage
PCM as a Main Memory

Lee et al., ISCA 2009

Delay & Timing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PCM</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRCD (cy)</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>tCL (cy)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>tWL (cy)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>tCCD (cy)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>tWTR (cy)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>tWR (cy)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>tRTP (cy)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>tRP (cy)</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>tRRDact (cy)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>tRRDpre (cy)</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>

Energy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PCM</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array read (pJ/bit)</td>
<td>2.47</td>
<td>1.17</td>
</tr>
<tr>
<td>Array write (pJ/bit)</td>
<td>16.82</td>
<td>0.39</td>
</tr>
<tr>
<td>Buffer read (pJ/bit)</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Buffer write (pJ/bit)</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Background power (pJ/bit)</td>
<td>0.08</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Two main innovations to overcome these drawbacks:

- decoupled row buffers and non-destructive PCM reads
- multiple narrow row buffers (row buffer cache)
Optimizations for Writes (Energy, Lifetime)

• Read a line before writing and only write the modified bits
 Zhou et al., ISCA’09

• Write either the line or its inverted version, whichever causes fewer bit-flips
 Cho and Lee, MICRO’09

• Only write dirty lines in a PCM page (when a page is evicted from a DRAM cache)
 Lee et al., Qureshi et al., ISCA’09

• When a page is brought from disk, place it only in DRAM cache and place in PCM upon eviction
 Qureshi et al., ISCA’09

• Wear-leveling: rotate every new page, shift a row periodically, swap segments
 Zhou et al., Qureshi et al., ISCA’09
Hard Error Tolerance in PCM

- PCM cells will eventually fail; important to cause gradual capacity degradation when this happens

- Pairing: among the pool of faulty pages, pair two pages that have faults in different locations; replicate data across the two pages

Ipek et al., ASPLOS’10

- Errors are detected with parity bits; replica reads are issued if the initial read is faulty
• Instead of using ECC to handle a few transient faults in DRAM, use error-correcting pointers to handle hard errors in specific locations

• For a 512-bit line with 1 failed bit, maintain a 9-bit field to track the failed location and another bit to store the value in that location

• Can store multiple such pointers and can recover from faults in the pointers too

• ECC has similar storage overhead and can handle soft errors; but ECC has high entropy and can hasten wearout
• Most PCM hard errors are stuck-at faults (stuck at 0 or stuck at 1)

• Either write the word or its flipped version so that the failed bit is made to store the stuck-at value

• For multi-bit errors, the line can be partitioned such that each partition has a single error

• Errors are detected by verifying a write; recently failed bit locations are cached so multiple writes can be avoided
FREE-p

• When a PCM block is unusable because the number of hard errors has exceeded the ECC capability, it is remapped to another address; the pointer to this address is stored in the failed block.

• The pointer can be replicated many times in the failed block to tolerate the multiple errors in the failed block.

• Requires two accesses when handling failed blocks; this overhead can be reduced by caching the pointer at the memory controller.
Title

• Bullet