
1

Lecture 14: Parallel Algorithms

• Topics: sort, matrix, graph algorithms

2

Processor Model

• High communication latencies pursue coarse-grain
parallelism (the focus of the course so far)

• For upcoming lectures, focus on fine-grain parallelism

• VLSI improvements enough transistors to accommodate
numerous processing units on a chip and (relatively) low
communication latencies

• Consider a special-purpose processor with thousands of
processing units, each with small-bit ALUs and limited
register storage

3

Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs
will require minor modifications)

• At each clock, processors receive inputs from neighbors,
perform computations, generate output for neighbors, and
update local storage

input

output

4

Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “∗”, which is
bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

5

Sorting Example

6

Result Output

• The output process begins when a processor receives
a non-∗, followed by a “∗”

• Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?

7

Output Example

8

Bit Model

• The bit model affords a more precise measure of
complexity – we will now assume that each processor
can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k
2-d array of bit processors

9

Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically – after at most 2k steps, each processor
knows which number must be moved to the right – 2kN
steps in the worst case

• Strategy 2: Use a tree to communicate information on
which number is greater – after 2logk steps, each processor
knows which number must be moved to the right – 2Nlogk
steps

• Can we do better?

10

Strategy 2: Column of Trees

11

Pipelined Comparison

Input numbers: 3 4 2
0 1 0
1 0 1
1 0 0

12

Complexity

• How long does it take to sort N k-bit numbers?
(2N – 1) + (k – 1) + N (for output)

• (With a 2d array of processors) Can we do even better?

• How do we prove optimality?

13

Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output
with k pins – requires Ω(N) time

• Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) – for
example, N-1 numbers are 011..1 and the last number is
either 00…0 or 10…0 – it takes at least N+k-2 steps for
information to travel across the diameter

• Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
imposes a minimum completion time

14

Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be
in the wrong half, will any algorithm take at least N/2 steps?

15

Counting Algorithm

• It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

• After the root has computed the number of 1’s, this
number is communicated to the leaves – the leaves
accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the
other half (logN-1 bits) – therefore, the algorithm takes
Ω(logN) time

• Careful when estimating lower bounds!

16

Matrix Algorithms

• Consider matrix-vector multiplication:

yi = Σj aijxj

• The sequential algorithm takes 2N2 – N operations

• With an N-cell linear array, can we implement
matrix-vector multiplication in O(N) time?

17

Matrix Vector Multiplication

Number of steps = ?

18

Matrix Vector Multiplication

Number of steps = 2N – 1

19

Matrix-Matrix Multiplication

Number of time steps = ?

20

Matrix-Matrix Multiplication

Number of time steps = 3N – 2

21

Complexity

• The algorithm implementations on the linear arrays have
speedups that are linear in the number of processors – an
efficiency of O(1)

• It is possible to improve these algorithms by a constant
factor, for example, by inputting values directly to each
processor in the first step and providing wraparound edges
(N time steps)

22

Solving Systems of Equations

• Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where Ax = b (assume solution exists)

a11x1 = b1
a21x1 + a22x2 = b2 , and so on…

23

Equation Solver

24

Equation Solver Example

• When an x, b, and a meet at a cell, ax is subtracted from b
• When b and a meet at cell 1, b is divided by a to become x

25

Complexity

• Time steps = 2N – 1

• Speedup = O(N), efficiency = O(1)

• Note that half the processors are idle every time step –
can improve efficiency by solving two interleaved
equation systems simultaneously

26

Gaussian Elimination

• Solving for x, where Ax=b and A is a nonsingular matrix

• Note that A-1Ax = A-1b = x ; keep applying transformations
to A such that A becomes I ; the same transformations
applied to b will result in the solution for x

• Sequential algorithm steps:
Pick a row where the first (ith) element is non-zero and
normalize the row so that the first (ith) element is 1
Subtract a multiple of this row from all other rows so
that their first (ith) element is zero
Repeat for all i

27

Sequential Example

2 4 -7 x1 3
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
0 5 -15/2 x3 15/2

1 2 -7/2 x1 3/2
0 5 -15/2 x2 = 15/2
0 0 1/2 x3 -1/2

1 2 -7/2 x1 3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1 x3 -1

1 0 0 x1 -2
0 1 0 x2 = 0
0 0 1 x3 -1

28

Algorithm Implementation

• The matrix is input in staggered form
• The first cell discards inputs until it finds

a non-zero element (the pivot row)

• The inverse ρ of the non-zero
element is now sent rightward

• ρ arrives at each cell at the same
time as the corresponding
element of the pivot row

29

Algorithm Implementation

• Each cell stores δi = ρ ak,I – the value for the normalized pivot row
• This value is used when subtracting a multiple of the pivot row from other rows
• What is the multiple? It is aj,1
• How does each cell receive aj,1 ? It is passed rightward by the first cell
• Each cell now outputs the new values for each row
• The first cell only outputs zeroes and these outputs are no longer needed

30

Algorithm Implementation

• The outputs of all but the first cell must now go through the remaining
algorithm steps

• A triangular matrix of processors efficiently implements the flow of data
• Number of time steps?
• Can be extended to compute the inverse of a matrix

31

Graph Algorithms

32

Floyd Warshall Algorithm

33

Implementation on 2d Processor Array

Row 3
Row 2
Row 1

Row 1

Row 3
Row 2

Row 1/2

Row 3

Row 1/3

Row 2

Row 1

Row 2/3

Row 2/1

Row 3

Row 2

Row 3/1 Row 3/2

Row 1

Row 3

Row 2
Row 1

Row 3
Row 2
Row 1

34

Algorithm Implementation

• Diagonal elements of the processor array can broadcast
to the entire row in one time step (if this assumption is not
made, inputs will have to be staggered)

• A row sifts down until it finds an empty row – it sifts down
again after all other rows have passed over it

• When a row passes over the 1st row, the value of ai1 is
broadcast to the entire row – aij is set to 1 if ai1 = a1j = 1
– in other words, the row is now the ith row of A(1)

• By the time the kth row finds its empty slot, it has already
become the kth row of A(k-1)

35

• When the ith row starts moving again, it travels over
rows ak (k > i) and gets updated depending on
whether there is a path from i to j via vertices < k (and
including k)

Algorithm Implementation

36

Shortest Paths

• Given a graph and edges with weights, compute the
weight of the shortest path between pairs of vertices

• Can the transitive closure algorithm be applied here?

37

Shortest Paths Algorithm

The above equation is very similar to that in transitive closure

38

Sorting with Comparison Exchange

• Earlier sort implementations assumed processors that
could compare inputs and local storage, and generate
an output in a single time step

• The next algorithm assumes comparison-exchange
processors: two neighboring processors I and J (I < J)
show their numbers to each other and I keeps the
smaller number and J the larger

39

Odd-Even Sort

• N numbers can be sorted on an N-cell linear array
in O(N) time: the processors alternate operations with
their neighbors

40

Shearsort

• A sorting algorithm on an N-cell square matrix that
improves execution time to O(sqrt(N) logN)

• Algorithm steps:
Odd phase: sort each row with odd-even sort (all odd

rows are sorted left to right and all even
rows are sorted right to left)

Even phase: sort each column with odd-even sort
Repeat

• Each odd and even phase takes O(sqrt(N)) steps – the
input is guaranteed to be sorted in O(logN) steps

41

Example

42

The 0-1 Sorting Lemma

If a comparison-exchange algorithm sorts input sets
consisting solely of 0’s and 1’s, then it sorts all input
sets of arbitrary values

43

Complexity Proof

• How do we prove that the algorithm completes in O(logN)
phases? (each phase takes O(sqrt(N)) steps)

• Assume input set of 0s and 1s

• There are three types of rows: all 0s, all 1s, and mixed
entries – we will show that after every phase, the number
of mixed entry rows reduces by half

• The column sort phase is broken into the smaller steps
below: move 0 rows to the top and 1 rows to the bottom;
the mixed rows are paired up and sorted within pairs;
repeat these small steps until the column is sorted

44

Example

• The modified algorithm will behave as shown below:
white depicts 0s and blue depicts 1s

45

Proof

• If there are N mixed rows, we are guaranteed to have
fewer than N/2 mixed rows after the first step of the
column sort (subsequent steps of the column sort may
not produce fewer mixed rows as the rows are not sorted)

Each pair of mixed rows produces at least one pure row
when sorted

46

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46

