Lecture 11: Large Cache Design

Topics: large cache basics and...

e An Adaptive, Non-Uniform Cache Structure for
Wire-Dominated On-Chip Caches, Kim et al., ASPLOS’02

 Distance Associativity for High-Performance Energy-Efficient
Non-Uniform Cache Architectures, Chishti et al., MICRO’03

« Managing Wire Delay in Large Chip-Multiprocessor Caches,
Beckmann and Wood, MICRO’04

« Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation, Cho and Jin, MICRO’06



Shared Vs. Private Caches in Multi-Core

« Advantages of a shared cache:
= Space is dynamically allocated among cores
= No wastage of space because of replication
= Potentially faster cache coherence (and easier to
locate data on a miss)

« Advantages of a private cache:
= small L2 - faster access time
= private bus to L2 - less contention
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to the appropriate L2 bank

Memory Controller for off-chip access
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operations
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Large NUCA

Issues to be addressed for
Non-Uniform Cache Access:

« Mapping

* Migration

» Search

* Replication




Static and Dynamic NUCA

o Static NUCA (S-NUCA)
* The address index bits determine where the block
IS placed
= Page coloring can help here as well to improve locality

* Dynamic NUCA (D-NUCA)

= Blocks are allowed to move between banks

* The block can be anywhere: need some search
mechanism

= Each core can maintain a partial tag structure so they
have an idea of where the data might be (complex!)

= Every possible bank is looked up and the search
propagates (either in series or in parallel) (complex!g



Kim et al. (ASPLOS’02)

(a) Simple Mapping (b) Fair Mapping (c) Shared Mapping
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e Search policies:
= incremental: check each bank before propagating the search
= multicast: search in parallel
= smart search: cache controller maintains partial tags that guide
search or quickly signal a cache miss
 Movement: Data gradually moves closer as it is accessed
* Placement policy:

= bring data close or far
= replaced data is evicted or moved to furthest bank



Results

Average IPC values (16 MB, 50nm technology) :

« UCA cache: 0.26

e Multi-level UCA (L2/L3): 0.64

e Static NUCA: 0.65

* D-NUCA (simple map, multicast, 0.71
Insert at tail, 1-hit/1-bank promotion)

* D-NUCA with smart search 0.75

e Upper bound (instant L2 miss 0.89

detection and all hits in first bank)
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Chishti et al. (MICRO’03)

* Decouples the tag and data arrays

e Tag arrays are first examined (serial tag-data access Is
common and more power-efficient for large caches)

* Only the appropriate bank is then accessed

» Tags are organized conventionally, but within the data
arrays, a set may have all its ways concentrated nearby

* The tags maintain forward pointers to data and data blocks
maintain reverse pointers to tags
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NURAPID and Distance-Associativity
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FIGURE 1: NuRAPID cache.



Beckmann and Wood, MICRO’04
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Examples: Frequency of Accesses
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Figure 10. oltp L2 Hit Distribution

Figure 11. ocean L2 Hit Distribution



Block Migration Results
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Alternative Layout

(a) CMP Substrate: 16 CPUs 8x8 Banks
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From Huh et al., ICS’'05:

» Paper also introduces the
notion of sharing degree

» A bank can be shared by
any number of cores
between N=1 and 16.

* Will need support for L2
coherence as well



Cho and Jin, MICRO’06

e Page coloring to improve proximity of data and computation
 Flexible software policies

* Has the benefits of S-NUCA (each address has a unique
location and no search is required)

» Has the benefits of D-NUCA (page re-mapping can help
migrate data, although at a page granularity)

 Easily extends to multi-core and can easily mimic the
behavior of private caches
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Page Coloring Example

* Recent work (Awasthi et al., HPCA'09) proposes a mechanism for
hardware-based re-coloring of pages without requiring copies in
DRAM memory
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Title

e Bullet
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