Lecture 8: Eager Transactional Memory

« Topics: iImplementation detalls of eager TM, various
TM pathologies

“Eager” Overview

Topics:

* Logs

 Log optimization

* Conflict examples

» Handling deadlocks

« Sticky scenarios

* Aborts/commits/parallelism

Dir

RW RW RW RW

Dir

Dir

Dir

“Eager” Implementation (Based Primarily on LogTM)

« A write Is made permanent immediately (we do not wait
until the end of the transaction)

« Can't lose the old value (in case this transaction is
aborted) — hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This Is eager versioning

Versioning

« Every overflowed write first requires a read and a write to
log the old value — the log is maintained in virtual memory
and will likely be found in cache

* Aborts are uncommon — typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

e If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

e Log writes can be placed in a write buffer to reduce
contention for L1 cache ports

Conflict Detection and Resolution

 Since Transaction-A’s writes are made permanent
rightaway, It is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

e At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at |least
one of them does a write

* One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B walts and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B
- neither transaction needs to abort

Deadlocks

e Can lead to deadlocks: each transaction is waiting for the
other to finish

* Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write 'Y
read Y read X

* Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction 0

Block Replacement

e If a block in a transaction’s rd/wr-set is evicted, the data
IS written back to memory If necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction

has committed before proceeding)

 The sticky pointers are lazily removed over time (commits
continue to be fast)

Paper on TM Pathologies

 LL: lazy versioning, lazy conflict detection, committing
transaction wins conflicts

e EL: lazy versioning, eager conflict detection, requester
succeeds and others abort

* EE: eager versioning, eager conflict detection, requester
stalls

Pathology 1: Friendly Fire

. o _ * VM: any
Two conflicting transactions that « CD: eager

keep aborting each other - CR: requester wins

e Can do exponential back-off to
handle livelock
* Fixable by doing requester stalls?

Pathology 2: Starving Writer

- A writer has to wait for the reader '\é'\[;'f any
- CD: eager

to finish — but if more readers keep « CR: requester stalls

showing up, the writer is starved
(note that the directory allows new
readers to proceed by just adding
them to the list of sharers)

10

Pathology 3: Serialized Commit

e If there’s a single commit token,
transaction commit is serialized

* VM: lazy
* CD: lazy
 CR: any

* There are ways to alleviate this problem

11

Pathology 4: Futile Stall

L : VM: any
A transaction is stalling on another - CD: eager

transaction that ultimately aborts and |. cr: requester stalls

takes a while to reinstate old values

12

Pathology 5: Starving Elder

« Small successful transactions can
keep aborting a large transaction

* The large transaction can eventually
grab the token and not release it
until after it commits

* VM: lazy
* CD: lazy
e CR: committer wins

13

Pathology 6. Restart Convoy

* A number of similar (conflicting)
transactions execute together — one
wins, the others all abort — shortly,
these transactions all return and
repeat the process

* VM: lazy
* CD: lazy
e CR: committer wins

14

Pathology 7. Dueling Upgrades

. : VM: eager
If two transactions both read the . CD: eager

same object and then both decide to |. cRr: requester stalls

write it, a deadlock is created
« Exacerbated by the Futile Stall pathology

e Solution?

15

Four Extensions

 Predictor: predict if the read will soon be followed by a
write and acquire write permissions aggressively

e Hybrid: if a transaction believes it is a Starving Writer, it
can force other readers to abort; for everything else, use
requester stalls

e Timestamp: In the EL case, requester wins only if it Is the
older transaction (handles Friendly Fire pathology)

e Backoff: in the LL case, aborting transactions invoke
exponential back-off to prevent convoy formation

16

Title

e Bullet

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

