
1

Lecture 8: Eager Transactional Memory

• Topics: implementation details of eager TM, various
TM pathologies

2

“Eager” Overview
Topics:
• Logs
• Log optimization
• Conflict examples
• Handling deadlocks
• Sticky scenarios
• Aborts/commits/parallelism

C
Dir

P
R W

C
Dir

P
R W

C
Dir

P
R W

C
Dir

P
R W

Scalable Non-broadcast
Interconnect

3

“Eager” Implementation (Based Primarily on LogTM)

• A write is made permanent immediately (we do not wait
until the end of the transaction)

• Can’t lose the old value (in case this transaction is
aborted) – hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This is eager versioning

4

Versioning

• Every overflowed write first requires a read and a write to
log the old value – the log is maintained in virtual memory
and will likely be found in cache

• Aborts are uncommon – typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

• If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

• Log writes can be placed in a write buffer to reduce
contention for L1 cache ports

5

Conflict Detection and Resolution

• Since Transaction-A’s writes are made permanent
rightaway, it is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at least
one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B

neither transaction needs to abort

6

Deadlocks

• Can lead to deadlocks: each transaction is waiting for the
other to finish

• Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write Y
… …
read Y read X

• Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction

7

Block Replacement

• If a block in a transaction’s rd/wr-set is evicted, the data
is written back to memory if necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction
has committed before proceeding)

• The sticky pointers are lazily removed over time (commits
continue to be fast)

8

Paper on TM Pathologies

• LL: lazy versioning, lazy conflict detection, committing
transaction wins conflicts

• EL: lazy versioning, eager conflict detection, requester
succeeds and others abort

• EE: eager versioning, eager conflict detection, requester
stalls

9

• Two conflicting transactions that
keep aborting each other

• Can do exponential back-off to
handle livelock

• Fixable by doing requester stalls?

• VM: any
• CD: eager
• CR: requester wins

Pathology 1: Friendly Fire

10

• A writer has to wait for the reader
to finish – but if more readers keep
showing up, the writer is starved
(note that the directory allows new
readers to proceed by just adding
them to the list of sharers)

• VM: any
• CD: eager
• CR: requester stalls

Pathology 2: Starving Writer

11

• If there’s a single commit token,
transaction commit is serialized

• There are ways to alleviate this problem

• VM: lazy
• CD: lazy
• CR: any

Pathology 3: Serialized Commit

12

• A transaction is stalling on another
transaction that ultimately aborts and
takes a while to reinstate old values

• VM: any
• CD: eager
• CR: requester stalls

Pathology 4: Futile Stall

13

• Small successful transactions can
keep aborting a large transaction

• The large transaction can eventually
grab the token and not release it
until after it commits

• VM: lazy
• CD: lazy
• CR: committer wins

Pathology 5: Starving Elder

14

• A number of similar (conflicting)
transactions execute together – one
wins, the others all abort – shortly,
these transactions all return and
repeat the process

• VM: lazy
• CD: lazy
• CR: committer wins

Pathology 6: Restart Convoy

15

• If two transactions both read the
same object and then both decide to
write it, a deadlock is created

• Exacerbated by the Futile Stall pathology

• Solution?

• VM: eager
• CD: eager
• CR: requester stalls

Pathology 7: Dueling Upgrades

16

Four Extensions

• Predictor: predict if the read will soon be followed by a
write and acquire write permissions aggressively

• Hybrid: if a transaction believes it is a Starving Writer, it
can force other readers to abort; for everything else, use
requester stalls

• Timestamp: In the EL case, requester wins only if it is the
older transaction (handles Friendly Fire pathology)

• Backoff: in the LL case, aborting transactions invoke
exponential back-off to prevent convoy formation

17

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

