
1

Lecture 6: Lazy Transactional Memory

• Topics: TM semantics and implementation details
of “lazy” TM

2

Transactions

• Access to shared variables is encapsulated within
transactions – the system gives the illusion that the
transaction executes atomically – hence, the programmer
need not reason about other threads that may be running
in parallel with the transaction

Conventional model: TM model:
… …
lock(L1); trans_begin();

access shared vars access shared vars
unlock(L1); trans_end();
… …

3

Transactions

• Transactional semantics:
when a transaction executes, it is as if the rest of the
system is suspended and the transaction is in isolation
the reads and writes of a transaction happen as if they
are all a single atomic operation
if the above conditions are not met, the transaction
fails to commit (abort) and tries again

transaction begin
read shared variables
arithmetic
write shared variables

transaction end

4

Why are Transactions Better?

• High performance with little programming effort
Transactions proceed in parallel most of the time
if the probability of conflict is low (programmers need
not precisely identify such conflicts and find
work-arounds with say fine-grained locks)
No resources being acquired on transaction start;
lesser fear of deadlocks in code
Composability

5

Example

Producer-consumer relationships – producers place tasks at the tail of
a work-queue and consumers pull tasks out of the head

Enqueue Dequeue
transaction begin transaction begin

if (tail == NULL) if (head->next == NULL)
update head and tail update head and tail

else else
update tail update head

transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be
updated – with transactions, enqueue and dequeue can proceed in
parallel – transactions will be aborted only if the queue is nearly empty

6

Example

Is it possible to have a transactional program that deadlocks,
but the program does not deadlock when using locks?

flagA = flagB = false;
thr-1 thr-2

lock(L1) lock(L2)
while (!flagA) {}; flagA = true;
flagB = true; while (!flagB) {};

* *
unlock(L1) unlock(L2)

• Somewhat contrived
• The code implements a barrier before getting to *
• Note that we are using different lock variables

7

Atomicity

• Blindly replacing locks-unlocks with tr-begin-end may
occasionally result in unexpected behavior

• The primary difference is that:
transactions provide atomicity with every other transaction
locks provide atomicity with every other code segment
that locks the same variable

• Hence, transactions provide a “stronger” notion of
atomicity – not necessarily worse for performance or
correctness, but certainly better for programming ease

8

Other Constructs

• Retry: abandon transaction and start again

• OrElse: Execute the other transaction if one aborts

• Weak isolation: transactional semantics enforced only
between transactions

• Strong isolation: transactional semantics enforced beween
transactions and non-transactional code

9

Other Issues

• Nesting: when one transaction calls another
flat nesting: collapse all nested transactions into one

large transaction
closed nesting: inner transaction’s rd-wr set are included

in outer transaction’s rd-wr set on inner
commit; on an inner conflict, only the
inner transaction is re-started

open nesting: on inner commit, its writes are committed
and not merged with outer transaction’s
commit set

• What if a transaction performs I/O? (buffering can help)

10

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will
fit in cache

• Transactions often commit successfully – less than 10%
are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!
fast commits, can have slightly slow aborts, can have
slightly slow overflow mechanisms

11

Design Space

• Data Versioning
Eager: based on an undo log
Lazy: based on a write buffer
Typically, versioning is done in cache;
The above two are variants that handle overflow

• Conflict Detection
Optimistic detection: check for conflicts at commit time
(proceed optimistically thru transaction)
Pessimistic detection: every read/write checks for
conflicts (so you can abort quickly)

12

Basic Implementation – Lazy, Lazy

• Writes can be cached (can’t be written to memory) – if the
block needs to be evicted, flag an overflow (abort transaction
for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for
each transaction

• When another transaction commits, compare its write set
with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their
write-sets do not intersect)

13

Lazy Overview
Topics:
• Commit order
• Overheads
• Wback, WAR, WAW, RAW
• Overflow
• Parallel Commit
• Hiding Delay
• I/O
• Deadlock, Livelock, Starvation

C

P
R W

C

P
R W

C

P
R W

C

P
R W

M A

14

“Lazy” Implementation (Partially Based on TCC)

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

15

Handling Reads/Writes

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data) (or must acquire
commit permissions)

16

Commit Process

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted or written
again – must simply invalidate other readers of these lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)

17

Miscellaneous Properties

• While a transaction is committing, other transactions can
continue to issue read requests

• Writeback after commit can be deferred until the next
write to that block

• If we’re tracking info at block granularity, (for various
reasons), a conflict between write-sets must force an abort

18

Summary of Properties

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms

19

TCC Features

• All transactions all the time (the code only defines
transaction boundaries): helps get rid of the baseline
coherence protocol

• When committing, a transaction must acquire a central
token – when I/O, syscall, buffer overflow is encountered,
the transaction acquires the token and starts commit

• Each cache line maintains a set of “renamed bits” – this
indicates the set of words written by this transaction –
reading these words is not a violation and the read-bit is
not set

20

TCC Features

• Lines evicted from the cache are stored in a write buffer;
overflow of write buffer leads to acquiring the commit token

• Less tolerant of commit delay, but there is a high degree
of “coherence-level parallelism”

• To hide the cost of commit delays, it is suggested that a
core move on to the next transaction in the meantime –
this requires “double buffering” to distinguish between
data handled by each transaction

• An ordering can be imposed upon transactions – useful for
speculative parallelization of a sequential program

21

Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols

22

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

