Predicting Inter-Thread Cache Contention on a Chip Multi-Processor
Architecture*

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin
Dept. of Electrical and Computer Engineering
North Carolina State University
{dchandr, fguo, skim16, solihin} @ece.ncsu.edu

Abstract

This paper studies the impact of L2 cache sharing on
threads that simultaneously share the cache, on a Chip
Multi-Processor (CMP) architecture. Cache sharing im-
pacts threads non-uniformly, where some threads may be
slowed down significantly, while others are not. This may
cause severe performance problems such as sub-optimal
throughput, cache thrashing, and thread starvation for
threads that fail to occupy sufficient cache space to make
good progress. Unfortunately, there is no existing model
that allows extensive investigation of the impact of cache
sharing. To allow such a study, we propose three perfor-
mance models that predict the impact of cache sharing on
co-scheduled threads. The input to our models is the iso-
lated L2 cache stack distance or circular sequence profile
of each thread, which can be easily obtained on-line or
off-line. The output of the models is the number of ex-
tra L2 cache misses for each thread due to cache sharing.
The models differ by their complexity and prediction ac-
curacy. \We validate the models against a cycle-accurate
simulation that implements a dual-core CMP architecture,
on fourteen pairs of mostly SPEC benchmarks. The most
accurate model, the Inductive Probability model, achieves
an average error of only 3.9%. Finally, to demonstrate the
usefulness and practicality of the model, a case study that
details the relationship between an application’s temporal
reuse behavior and its cache sharing impact is presented.

1. Introduction

In a typical Chip Multi-Processor (CMP) architecture, the
L2 cache and its lower level memory hierarchy are shared
by multiple cores [8]. Sharing the L2 cache allows high
cache utilization and avoids duplicating cache hardware re-
sources. However, as will be demonstrated in this paper,
cache sharing impacts threads non-uniformly, where some
threads may be slowed down significantly, while others are
not. This may cause severe performance problems such as
sub-optimal throughput, cache thrashing, and thread star-
vation for threads that fail to occupy sufficient cache space

*This work is supported in part by the National Science Founda-
tion through grant CNS-0406306 and Faculty Early Career Development
Award CCF-0347425, and by North Carolina State University.

to make good progress.

To illustrate the performance problem, Figure 1 shows the
number of L2 cache misses (1a) and IPC (1b) for mcf when
it runs alone compared to when it is co-scheduled with an-
other thread which runs on a different processor core but
sharing the L2 cache. The bars are normalized to the case
where mcf runs alone. The figure shows that when mcf runs
together with mst or gzip, mcf does not suffer from many
additional misses compared to when it runs alone. How-
ever, when it runs together with art or swim, its number of
misses increases to roughly 390% and 160%, respectively,
resulting in IPC reduction of 65% and 25%, respectively.

400%
350%

m cESN om alized

L2 CacheM isses
N
S
5]
B
m cESN om alized IPC
o o
n w

g H &5 ¥ & a g g % &
265§ b 2§ 5 &%
E g pe E £ g b £
E £
(a) (b)

Figure 1. The number of L2 cache misses (a), and
IPC (b), for mcf when it runs alone compared to
when it is co-scheduled with another thread. The
L2 cache is 512KB, 8-way associative, and has a
64-byte line size.

Past studies have investigated profiling techniques that de-
tect but not prevent the problems, and apply inter-thread
cache partitioning schemes to improve fairness [11] or
throughput [22, 11]. However, the questions of what fac-
tors influence the impact of cache sharing suffered by a
thread in a co-schedule, and whether the problems can be
predicted (hence prevented) were not addressed. This pa-
per addresses both questions by presenting analytical and
heuristic models to predict the impact of cache sharing.

Past performance prediction models only predict the num-
ber of cache misses in a uniprocessor system [3, 4, 5, 6, 12,
24, 26], or predict cache contention on a single processor
time-shared system [1, 21, 23], where it was assumed that
only one thread runs at any given time. Therefore, interfer-
ence between threads that share a cache was not modeled.

This paper goes beyond past studies and presents three

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

tractable models that predict the impact of cache space con-
tention between threads that simultaneously share the L2
cache on a Chip Multi-Processor (CMP) architecture. Two
models, Frequency of Access (FOA) and Stack Distance
Competition model (SDC), are based on heuristics. The
third model is an analytical inductive probability model
(Prob). The input to our models is the isolated L2 cache
stack distance or circular sequenceprofiling of each thread,
which can be easily obtained on-line or off-line. The out-
put of the models is the number of extra L2 cache misses of
each thread that shares the cache. We validate the models
by comparing the predicted number of cache misses under
cache sharing for fourteen pairs of benchmarks against a
detailed, cycle-accurate CMP architecture simulation. We
found that Prob is very accurate, achieving an average ab-
solute error of only 3.9%. The two heuristics-based models
are simpler but not as accurate.

Finally, the Prob model provides a valuable and practical
tool through which we can study the impact of cache shar-
ing extensively. We present a case study that evaluates how
different temporal reuse behavior in applications influence
the impact of cache sharing suffered by them. The study
gives an insight into what types of applications are vulner-
able (or not vulnerable) to a large increase in cache misses
under sharing.

The rest of the paper is organized as follows. Section 2
presents the three models. Section 3 details the validation
setup for our models. Section 4 presents and discusses the
model validation results and the case study. Section 5 de-
scribes related work. Finally, Section 6 summarizes the
findings.

2. Cache MissPrediction Models

This section will present our three cache miss prediction
models. It starts by presenting assumptions used by the
models (Section 2.1), then it presents an overview of the
three models (Section 2.2), the frequency of access (FOA)
model (Section 2.3), the stack distance competition (SDC)
model (Section 2.4), and the inductive probability (Prob)
model (Section 2.5). Since the most accurate model is
Prab, the discussion will focus mostly on Prob.

2.1. Assumptions

We assume that each thread’s temporal behavior can be
captured by a single stack distance or circular sequence
profile. Although applications change their temporal be-
havior over time, in practice we find that the average be-
havior is good enough to produce an accurate prediction of
the cache sharing impact. Representing an application with
multiple profiles that represent different program phases
may improve the prediction accuracy further, at the ex-
pense of extra complexity due to phase detection and pro-
filing, e.g. [15]. This is beyond the scope of this paper.

It is also assumed that the profile of a thread is the same
with or without sharing the cache with other threads. This
assumption ignores the impact of the multi-level cache in-

clusion property [2]. In such a system, when a cache line
is replaced from the L2 cache, the copy of the line in the
L1 cache is invalidated. As a result, the L1 cache may suf-
fer extra cache misses. This changes the cache miss stream
of the L1 cache, potentially changing the profile at the L2
cache level. In the evaluation (Section 4), we relax the as-
sumption and find negligible difference in the average pre-
diction error (0.4%).

Co-scheduled threads are assumed not to share any ad-
dress space. This is mostly true in the case where the
co-scheduled threads are from different applications. Al-
though parallel program threads may share a large amount
of data, the threads are likely to have similar characteris-
tics, making the cache sharing prediction easier because
the cache is likely to be equally divided by the threads and
each thread is likely to be impacted in the same way. Con-
sequently, we ignore this case.

Furthermore, for most of the analyses, the L2 cache only
stores data and not instructions. If instructions are stored in
the L2 cache with data, the accuracy of the model decreases
slightly (by 0.8%).

Finally, the L2 cache is assumed to use Least Recently
Used (LRU) replacement policy. Although some imple-
mentations use different replacement policies, they are usu-
ally an approximation to LRU. Therefore, the observations
of cache sharing impacts made in this paper are likely to be
applicable to other implementations as well.

2.2. Model Overview
2.2.1. Stack Distance Profiling

The input to the models is the isolated L2 cache stack dis-
tance or circular sequence profile of each thread without
cache sharing. A stack distance profile captures the tem-
poral reuse behavior of an application in a fully- or set-
associative cache [14, 3, 12, 19], and is sometimes also
referred to as marginal gain counters [21, 22]. For an A-
way associative cache with LRU replacement algorithm,
there are A + 1 counters: C,Cs,...,C4,Cs 4. On each
cache access, one of the counters is incremented. If it is a
cache access to a line in the i*” position in the LRU stack
of the set, C; is incremented. Note that our first line in
the stack is the most recently used line in the set, and the
last line in the stack is the least recently used line in the
set. If it is a cache miss, the line is not found in the LRU
stack, resulting in incrementing the miss counter C's 4. A
stack distance profile can be easily obtained statically by
the compiler [3], by simulation, or by running the thread
alone in the system [22].

Figure 2 shows an example of a stack distance profile.
Applications with temporal reuse behavior usually ac-
cess more-recently-used data more frequently than less-
recently-used data. Therefore, typically, the stack distance
profile shows decreasing values as we go to the right, as
shown in Figure 2. It is well known that the number of
cache misses for a smaller cache can be easily computed
using the stack distance profile. For example, for a smaller

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Cache hits

Cache Misses

Number of accesses

Cy ... CpCip
Stack distance counters

Figure 2. lllustration of a stack distance profile

cache that has A’ associativity, where A" < A, the new
number of misses can be computed as:

A
miss=Csa+ » C; (1)
i=A'+1

For our purpose, since we need to compare stack distance
profiles from different applications, it is useful to take the
counter’s frequency by dividing each of the counters by the
number of processor cycles in which the profile is collected
(e.,Cf; = #éyde). Furthermore, we refer to C f< 4 as
the miss frequency, denoting the frequency of cache misses
in CPU cycles. We also call the sum of all other counters,
ie. 224:1 C'f; as reuse frequency. We refer to the sum of
miss and reuse frequency as access frequency (Af).

2.2.2. Determining Factors

When several threads share a cache, they compete for
cache space. Each thread ends up occupying a portion
of the cache space, which we will refer to as the effec-
tive cache space of the thread. The size of the effec-
tive cache space determines the impact of cache sharing
on the threads. A thread that succeeds in competing for
sufficient cache space, relative to its working set, suffers
less impact from cache sharing. The ability of a thread to
compete for sufficient cache space, as will be discussed in
Section 4.4, is determined by its temporal reuse behavior,
which is largely determined by its stack distance profile.
Intuitively, a thread that frequently brings in new cache
lines (high miss frequency) and reuses them (high reuse
frequency) has a higher effective cache space compared to
other threads with low miss and reuse frequencies. Finally,
although less obvious, a thread with a more concentrated
stack distance profile (i.e., for all i, C; is much larger than
C;+1) reuses fewer lines often, making the lines less likely
to be replaced, increasing the effective cache space. Listing
these factors helps to qualitatively distinguish how much
detail each model takes into account.

2.2.3. Overview of the Models

We propose three models that vary in complexity and accu-
racy. Two of them are heuristics-based models: frequency
of access (FOA) and stack distance competition (SDC).
The two approaches are compared in Figure 3. Figure 3a
illustrates how FOA and SDC predict the number of extra
cache misses. Using a set of heuristics, they first predict

Table 1. Factors that determine the effective cache space
a thread occupies.

Information FOA SDC Prob

Considered

Miss frequency Partially No Yes

Reuse frequency Partially Yes Yes

Stack dist profile shape No Yes Yes

Profiling required Stack Stack Circular
distance | distance | sequence

the effective cache space (A’) that a thread will have under
cache sharing. Then A’ is input into Equation 1 to pre-
dict the number of misses that the thread will suffer under
cache sharing (the shaded region in Figure 3a). This ap-
proach uses an assumption that accesses to more recently
used lines, as long as their reuse distances are less than A’,
will not result in cache misses. However, this assumption
may not be accurate in some cases. For example, even an
access to the most recently used line may become a cache
miss, if there are sufficient intervening accesses and misses
from another thread. This aspect is taken into account by
the Prob model, which computes the probability of each
cache hit turning into a cache miss, for every possible ac-
cess interleaving by an interfering thread. This is illustrated
in Figure 3b.

5 g
2 . 8
8 Cache hits 3
3 & Cache hits
e Extra b
] Cache Misses e Extra .
_’E Original 2 Cache MlssesO il
§ Cache Misses g Caché Misses
Z Z
€ Gy Ca Csa i o Cp Csp
Stack distance counters Stack distance counters
(a) (b)

Figure 3. Comparing the prediction approach of
FOA and SDC (a), with that of Prob (b).

Table 1 compares the three models based on which of the
three factors that determine the effective cache space of a
thread under cache sharing are considered in the models.
The table shows that FOA only takes into account the ac-
cess frequency (sum of reuse and miss frequency). SDC
takes into account both the reuse frequency and stack dis-
tance shape, but ignores the miss frequency. Finally, Prob
takes into account all three factors but requires slightly
more detailed profiling compared to the stack distance pro-
filing, which will be discussed further in Section 2.5. From
the table, we expect Praob to be the most accurate because
it takes into account all the factors.

2.3. Frequency of Access(FOA) Model

The simplest model, frequency of access (FOA), uses an
assumption that the effective cache space of a thread is pro-
portional to its access frequency. This assumption makes
sense because a thread that has a high access frequency

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

tends to bring in more data into the cache and retains them,
occupying a larger effective cache space.

Let CacheSize denote the total cache size, and Afx de-
note the access frequency of thread X. Let us assume that
there are N threads running together and share the cache.
The effective cache size for thread X can be calculated
from:

A
ef fCacheSizex = Ni x CacheSize (2)
j=1 J
effCacheSizex

By taking A" = “L-20 02X and plugging it into Equa-
tion 1 and applying linear interpolation whenever nec-
essary, we can obtain the number of cache misses un-
der cache sharing. Since FOA only takes into account
the access frequency, it may become inaccurate if the
co-scheduled threads have different stack distance profile
shapes, or when their ratios of miss and reuse frequency
are very different.

2.4. Stack Distance Competition (SDC) M odel

The stack distance competition (SDC) model tries to con-
struct a new stack distance profile that merges individ-
ual stack distance profiles of threads that run together, by
taking a subset of counters from the individual profiles.
A merging algorithm iteratively selects a stack distance
counter from a “winning” profile to be included in the
merged profile, until the merged profile fills up all of its
hit counters (i.e. C1,Cs,...,C4). To achieve this, each
individual profile is assigned a current pointer that is ini-
tialized to the first stack distance counter. In each iteration,
all the counters pointed by the current pointers from all in-
dividual stack distance profiles are compared, and the pro-
file with the highest counter value is selected as the winner.
The winner’s counter is copied into the merged profile, and
its current pointer is advanced. After the last iteration, the
effective cache space for each thread is computed propor-
tionally to the number of stack distance counters that are
included in the merged profile.

The stack distance competition model is intuitive because
it assumes that the higher the reuse frequency, the larger
the effective cache space. However, it does not take into
account the miss frequency. Therefore, the model can be
inaccurate if the threads have very different miss frequency.

2.5. Inductive Probability (Prob) Model

The most detailed model is an analytical model which uses
inductive probability for predicting the cache sharing im-
pact. Before we explain the model, it is useful to define
two terms.

Definition 1 A sequence of accesses from thread X, de-
noted as seqx (dx,nx), isa series of nx cache accesses
to dx distinct line addresses by thread X, where all the
accesses map to the same cache set.

Definition 2 A circular sequence of accesses from thread
X, denoted as cseqx(dx,nx), is a special case of

seqx (dx,nx) where the first and the last accesses are to
the same line address, and there are no other accesses to
that address.

For a sequence seqx(dx,nx), nx > dx necessarily
holds. When nx = dx, each access is to a distinct ad-
dress. We use seqx (dx, *) to denote all sequences where
nx > dx. For a circular sequence cseqx(dx,nx),
nx > dx + 1 necessarily holds. When nx = dx + 1,
each access is to a distinct address, except the first and the
last accesses. We use cseqx (dx, *) to denote all sequences
where nxy > dx + 1.

In a sequence, there may be several, possibly overlapping,
circular sequences. The relationship of a sequence and cir-
cular sequences is illustrated in Figure 4. In the figure,
there are eight accesses to five different line addresses that
map to a cache set. In it, there are three circular sequences
that are overlapping: one that starts and ends with address
A (cseq(4,5)), another one that starts and ends with ad-
dress B (cseq(5,7)), and another one that starts and ends
with address E (cseq(1, 2)).

seq(5,8)
cseq(5,7)
ABCDAEERB
cseq(4,5)

cseq(1,2)

Figure 4. lllustration of the relationship between a
sequence and circular sequences.

We are interested in determining whether the last access
of a circular sequence cseqx (dx,nx) isacachehit or a
cache miss '. To achieve that, it is important to consider
the following property.

Property 1 In an A-way associative LRU cache, the last
access in a circular sequence cseqx (dx,nx) resultsin a
cachemissif between thefirst and thelast access, thereare
accessesto at least A distinct addresses (fromany threads).
Otherwise, the last accessis a cache hit.

Explanation: If there are accesses to a total of at least A
distinct addresses between the first access up to the time
right before the last access occurs, the address of the first
and last access will have been shifted out of the LRU stack
by the other A (or more) addresses, causing the last access
to be a cache miss. If there is only @ < A distinct addresses
between the first and the last access, then right before the
last access, the address would be in the (a + 1) position
in the LRU stack, resulting in a cache hit.

Corollary 1 Whenathread runsalone, thelast accessina
circular sequence cseqx (dx,nx) resultsin a cache miss

I Note that, there are some addresses that are accessed only once. They
do not form circular sequences. Each access results in a compulsory cache
miss. Therefore, with or without cache sharing, the access remains a
cache miss.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

if dx > A, or acache hitif dx < A. Furthermore, in
stack distance profiling, the last access of cseq x (dx,nx)
results in an increment to the counter Cs 4 if dx > A (a
cachemiss), or the counter Cy,, if dx < A (acachehit).

The corollary is intuitive since when a thread X runs
alone, the number of distinct addresses in the circular
sequence cseqx (dx,nx)is dx (because they only come
from thread X). More importantly, however, the corol-
lary shows the relationship between stack distance profil-
ing and circular sequences. Every time a circular sequence
with dx < A distinct addresses appears, C'y, is incre-
mented. If N(cseqx(dx,*)) denotes number of occur-
rences of circular sequences cseqx (dx, *), we have Cy,,
= N(eseqx (dx,*)). This leads to the following corollary.

Corollary 2 The probability of occurrences of circu-
lar sequences cseqx (dx,*) from thread X is equal to

P(eseqx (dx,*)) = w“i%ssx, where tot Accessx de-

note the total number of accesses of thread X, and d x <
A.

Let us now consider the impact of running a thread X to-
gether with another thread Y that shares the L2 cache with
it. Figure 5 illustrates the impact, assuming a 4-way as-
sociative cache. It shows a circular sequence of thread X
(“ A B A”). When thread Y runs together and shares the
cache, many access interleaving cases between accesses
from thread X and Y are possible. The figure shows two of
the access interleaving cases. In the first case, sequence “U
V V” from thread Y occurs during the circular sequence.
Since there are only three distinct addresses (U, B, and V)
between the first and the last access to A, the last access
to A is a cache hit. However, in the second case, sequence
“UV V W” from thread Y occurs during the circular se-
quence. Therefore there are four distinct addresses (U, B,
V, and W) between the accesses to A, which is equal to
the cache associativity. By the time the second access to
A occurs, address A is no longer in the LRU stack since it
has been replaced from the cache, resulting in a cache miss
for the last access to A. More formally, we can state the
condition for a cache miss in the following corollary.

Corollary 3 Quppose a thread X runs together with an-
other thread Y. Also suppose that during the time inter-
val between the first and the last access of X'’s circular
sequence, denoted by T'(csegx(dx,nx)), a sequence of
addresses fromthread Y (i.e., seqy (dy, ny)) occurs. The
last access of X’'scircular sequenceresultsin acachemiss
ifdx +dy > A, oracachehitifdy +dy < 4.2

Every cache miss of thread X remains a cache miss un-
der cache sharing. However, some of the cache hits of

2For simplicity, we only discuss a case where two threads share a
cache. The corollary can easily be extended to the case where there are
more than two threads.

X’s circular sequence cseq (2,3) Y’s sequence
ABA UvVvVw

casel:AUBV@W Case2:AUBVVW@

Cache Hit Cache Miss

Figure 5. lllustration of how intervening accesses
from another thread determines whether the last
access of a circular sequence will be a cache hit
or a miss. Capital letters in a sequence represent
line addresses. The figure assumes a 4-way as-
sociative cache and all accesses are to a single
cache set.

thread X may become cache misses under cache sharing,
as implied by the corollary. The corollary implies that
the probability of the last access in a circular sequence
cseqx (dx,nx), where dx < A, to become a cache miss
is equal to the probability of the occurrence of sequences
seqy (dy,*) wheredy > A —dx.

Note that we now deal with a probability computation with
four random variables (dx,nx,dy, and ny). To simplify
the computation, we represent nx and ny by their ex-
pected values: mx and E(ny), respectively. Hence, Corol-
lary 3 can be formally stated as:

E(ny)

Priss (CSE(IX (dX7W)) = Z

dy=A—dx+1

P(seqy (dy, E(ny)))

3

Therefore, computing the extra cache misses suffered by
thread X under cache sharing can be accomplished by us-
ing the following steps:

1. For each possible value of dx, compute the weighted
average of nx (i.e. nx) by considering the distribu-
tion of cseqx (dx,nx). This requires a circular se-
guence profiling, which we will describe later. Then,
we use cseqx (dx,nx) instead of cseqx (dx,nx).

2. Compute the expected time interval duration of the
circular sequence of X, i.e. T'(cseqx (dx,nx)).

3. Compute the expected number of accesses of Y, i.e.
E(ny),
during time interval T'(cseqx (dx,Tx)). Then, use
seqy (dy, E(ny)) to represent seqy (dy,ny)

4. For each possible value of dy, compute the probabil-
ity of occurrence of the sequence seqy (dy, E(ny)),
i.e. P(seqy(dy,E(ny))). Then, compute the prob-
ability of the last access of X s circular sequence be-
coming a cache miss by using Equation 3.

5. Compute the expected extra number of cache misses
by multiplying the probability of cache misses of each
circular sequence with its number of occurrences.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

6. Repeat Step 1-5 for each co-scheduled thread (e.g.,
thread V).

We will now describe how each step is performed.

25.1. Step 1. Computingnx

nx is computed by taking its average over all possible val-
uesof ny:

— Zzox:dx—i-l N(eseqx (dx,nx)) X nx @)

15
D onx—dx 1 V(eseax (dx,nx))

To obtain N (cseqx (dx,nx)), an off-line profiling or sim-
ulation can be used. An on-line profiling is also possible,
using simple hardware support where a counter is added to
each cache line to track n and a small table is added to keep
track of N (cseqx(dx,nx)). We found that each counter
only needs to be 7 bits because there are very few nx val-
ues that are larger than 128.

2.5.2. Step 2and 3: Computing T (cseqx (dx,mx)) and
E(ny)

To compute the expected time interval duration for a circu-
lar sequence, we simply divide it with the access frequency
per set of thread X (Afx):

nx

Afx

To estimate how many accesses by Y are expected to hap-
pen during the time interval T'(cseqx (dx,Tix)), we sim-
ply multiply it with the access frequency per set of thread
Y:

T(cseqx(dx,nx)) = (5

E(ny) = Afy x T(cseqx (dx,mx)) (6)

2.5.3. Step 4: Computing P(seqy (dy, E(ny)))

The problem can be stated as finding the probability that
given E(ny) accesses from thread Y, there are dy distinct
addresses, where dy is a random variable. For simplicity of
Step 4’s discussion, we will just write P(seq(d,n)) to rep-
resent P(seqy (dy, E(ny))). The following theorem uses
inductive probability function to compute P(seq(d,n)).

Theorem 1 For a sequence of n accesses from a given
thread, the probability of the sequence to have d distinct
addresses can be computed with a recursive relation, i.e.
P(seq(d,n)) =

1 ifn=d=1
P((d—1)") x P(seq(d—1,d — 1)) fn=d>1
P(17) x P(seq(l,n — 1)) ifn>d=1
P(d”) x P(seq(d,n — 1))+

((d—=1)") x P(seq(d—1,n—1) ifn>d>1
where P(d™) = Z | P(cseq(i,*)) and P(d*) = 1 —

P(d).

Proof: The proof will start from the more complex term to
the least complex term.

Case | (n > d > 1): Let the sequence seq(d,n) repre-
sents an access sequence Yi,Ys,...,Y,_1,Y,. The se-
quence just prior to this one is Y7,Y5,...,Y,_1. There
are two possible subcases. The first subcase is when the
address accessed by Y, also appears in the prior sequence,
i.e. addr(Y,) € {addr(Yl) addr(Yz2),...,addr(Y,-1)},
hence the prior sequence is seq(d,n — 1). Furthermore,
adding Y,, to the prior sequence creates a new circular se-
quence cseq(i,*) with 7 ranging from 1 to d, with a prob-
ability of Ele P(cseq(i, %)), denoted as P(d~). The
second subcase is when the address accessed by Y,, has
not appeared in the prior sequence, i.e. addr(Y,) ¢
{addr (Y1), addr(Y2),...,addr(Y,,—1)} hence the prior
sequence is seq(d — 1,n — 1). Furthermore, adding Y;, to
the prior sequence does not create a new circular sequence
at all (i.e. cseq(oo,*)), or creates a circular sequence
that is not within the sequence (i.e. cseq(i, *) where 7 >
d — 1). Therefore, the probability of the second subcase is
Z?id P(eseq(i,*)) = 1 — E?;ll P(cseq(i,*)), denoted
as P((d — 1)*) 3. Therefore, P(seq(d,n)) = P(d~) x
P(seq(d,n—1))+ P((d —1)*) x P(seq(d —1,n —1)).

Case 2 (n > d =1): since seq(l — 1,n — 1) is impos-
sible to occur, P(seq(d — 1,n — 1)) = 0. Therefore,
P(seq(1,n)) = (P(17) x P(seq(1,n — 1)) follows from
Case 1.

Case3(n=d > 1): since seq(d,n — 1) is impossi-
ble (there are more distinct addresses than accesses),
P(seq(d,n — 1)) = 0. Therefore, P(seq(d,n)) = P((d—
1)™) x P(seq(d — 1,d — 1)) follows from Case 1.

Case 4 (n = d = 1): P(seq(1,1)) = 1 is true because the
first address is always considered distinct. O

Probability D istrbution Function
054

P@E) PG")
04

03+

024

01+ I
0

Probability

Pleseq@ %)
P (cseq 2 ,*))
P (cseq B %))
P (cseq @ *))
P (cseq 5,*))
P (cseg 6 .*))
P (cseq (7))
P cs=eg®8.*)
Pcseg (>8,%))

Figure 6. Example probability distribution func-
tion that shows (3~) and P(3 ™). The function
is computed by using the formula in Corollary 2.

Corollary 2 and Figure 6 illustrates how P(d~) and P(d™)
can be computed from the stack distance profile. The figure
shows that we already have three distinct addresses in a
sequence. The probability that the next address will be one
already seen is P(37), otherwise itis P(37).

CoatS iy
3Computation-wise, sz P(cseq(i,*)) = %.

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

2.5.4. Step 5: Computing the Number of Extra Misses
Under Sharing

Step 4 has computed P(seqy(dy,E(ny))) for all
possible values of dy. We can then compute
Ppiss(cseqx (dx ,x)) using Equation 3. To find the to-
tal number of misses for thread X due to cache contention
with thread Y, we need to multiply the probability of a
cache miss from a particular circular sequence with the
number of occurrences of such a circular sequence, then
sum them over all possible values of dx, and add the result
to the original number of cache misses (C 4):

A
missx = Csa + Z Priss (cseqx (dX,W)) X Cdx @)

dx=1

3. Validation M ethodology

Simulation Environment. The evaluation is performed
using a detailed CMP architecture simulator based on
SESC, a cycle-accurate execution-driven simulator devel-
oped at the University of Illinois at Urbana-Champaign [9].
The CMP cores are out-of-order superscalar processors
with private L1 instruction and data caches, and shared L2
cache and all lower level memory hierarchy components.
Table 2 shows the parameters used for each component of
the architecture. The L2 cache uses prime modulo index-
ing to ensure that the cache sets’ utilization is uniform [10].
Unless noted otherwise, the L2 cache only stores data and
does not store instructions.

Table 2. Parameters of the simulated architecture. La-
tencies correspond to contention-free conditions. RT
stands for round-trip from the processor.

CMP

2 cores, each 4-issue dynamic. 3.2 GHz. Int, fp, 1d/st FUs: 3, 2, 2
Branch penalty: 13 cycles. Re-order buffer size: 152

MEMORY
L1 Inst, Data (private): each WB, 32 KB, 4 way, 64-B line, RT: 2
cycles, LRU replacement
L2 data (shared): WB, 512 KB, 8 way, 64-B line, RT: 12 cycles,
LRU replacement, prime modulo indexed, inclusive.
RT memory latency: 362 cycles
Memory bus: split-transaction, 8 B, 800 MHz, 6.4 GB/sec peak

Applications. To evaluate the benefit of the cache par-
titioning schemes, we choose a set of mostly memory-
intensive benchmarks: apsi, art, applu, equake, gzip, mcf,
perlbmk and swim from the SPEC2K benchmark suite [20];
and mst from Olden benchmark suite. Table 3 lists the
benchmarks, their input sets, and their L2 cache miss rates
over the benchmarks’ entire execution time. The miss rates
may differ from when they are co-scheduled, because the
duration of co-scheduling may be shorter than the entire ex-
ecution of the benchmarks. These benchmarks are paired
and co-scheduled. Fourteen benchmark pairs that exhibit
a wide spectrum of stack distance profile mixes are evalu-
ated.

Co-scheduling. Benchmark pairs run in a co-schedule un-

Table 3. The applications used in our evaluation.

Benchmark Input Set L2 Miss Rate
(whole execution)

art test 99%
applu test 68%
apsi test 5%
equake test 91%
gzip test 3%
mcf test 9%
perlbmk reduced ref 59%
swim test 75%
mst 1024 nodes 63%

til a thread that is shorter completes. At that point, the sim-
ulation is stopped to make sure that the statistics collected
are only due to sharing the L2 cache. To obtain accurate
stack distance or circular sequence profiles, for the shorter
thread, the profile is collected for its entire execution with-
out cache sharing. But for the longer thread, the profile is
collected for the same number of instructions as that in the
co-schedule.

4. Evaluation and Validation

This section will discuss four sets of results: the impact
of cache sharing on IPC (Section 4.1), validation of the
prediction models (Section 4.2), sensitivity study (Sec-
tion 4.3) and a case study on the relationship between tem-
poral reuse behavior and the impact of cache sharing (Sec-
tion 4.4).

4.1. Impact of Cache Sharing

Figure 7 shows the impact of cache sharing on IPC of each
benchmark in a co-schedule. Each group of two bars repre-
sents a co-schedule consisting of two threads from sequen-
tial benchmarks that run on different CMP cores. The full
height of each bar (black + white sections) represents the
IPC of the benchmark when it runs alone in the CMP. The
black section represents the IPC of the benchmark when
it is co-scheduled with another benchmark. Therefore, the
white section represents the reduction in IPC of the bench-
mark due to L2 cache sharing.

There are several interesting observations that can be made
from the figure. First, the figure confirms that the impact
of cache sharing is neither uniform nor consistent across
benchmarks. For most co-schedules, the IPC reduction of
the benchmarks is highly non-uniform. For example, in
applutart, while applu suffers from 42% IPC reduction,
art only suffers 14% IPC reduction. Similar observation
can be made for applu+equake (6% vs. 19%), art+equake
(10% vs. 41%), gzp+applu (25% vs. 4%), gzip+apsi
(20% vs. 0%), mcf+art (65% vs. 10%), and many oth-
ers. In addition, for almost all benchmarks, the IPC re-
duction is not consistent for the same benchmark across
different co-schedules. For example, the IPC reduction for
equakeis 19% in applu+equake, 41% in art+equake, 13%
in mcf+equake, and 2% in mst+equake. The same observa-
tion can be made for applu, mcf, gzip, and swim. Another
observation is that a few benchmarks, such as apsi and art,

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

‘ B IPC (Co-scheduled) OExtra IPC @ Ione)

& 2 &
SR Uw

.

Figure 7. The impact of cache sharing on the IPCs of co-scheduled threads.

do not exhibit much slowdown due to cache sharing. They
are applications with very low IPC values because they suf-
fer many L2 cache misses, where most of them are capacity
misses. Therefore, even when the effective cache space de-
creases, the number of cache misses cannot increase much.

4.2. Model Validation

Table 4 shows the validation results for the fourteen co-
schedules that we evaluate. The first numeric column
shows the number of instructions that each thread exe-
cutes in a co-schedule. The second column denotes the
extra L2 cache misses under cache sharing, divided by the
L2 cache misses when each benchmark runs alone (e.g.,
100% means that the number of cache misses under cache
sharing is two times compared to when the benchmark
runs alone). The cache misses are collected using simu-
lation. The next three columns present the prediction er-
rors of the FOA, SDC, and Prob models. The last two
columns (Prob+NI) and (Prob+Unif) will be discussed in
Section 4.2.1. The errors are computed as the difference in
the L2 cache misses predicted by the model and collected
by the simulator under cache sharing, divided by the num-
ber of L2 cache misses collected by the simulator under
cache sharing. Therefore, a positive number means that
the model predicts too many cache misses, while a nega-
tive number means that the model predicts too few cache
misses. The last four rows in the table summarize the er-
rors. They present the minimum, maximum, arithmetic
mean, and geometric mean of the errors, after each error
value is converted to its absolute (positive) value.

Consistent with the observation of IPC values in Sec-
tion 4.1, the benchmarks that show large IPC reduction
also suffer from many extra L2 cache misses, with one
exception. Specifically, the IPC reduction for swim in
swim+art is not caused by an increase in cache misses.
Rather, it is caused by memory bandwidth contention that
results in higher cache miss penalties. In five co-schedules,
one of the benchmarks suffers from 59% or more extra
cache misses: gziptapplu (243% extra misses in gzip),
gZip+aps (180% extra misses in gzip), mcf+art (296% ex-
tra misses in mcf), mcf+gzip (102% extra misses in gzip),
and mcf+swim (59% extra misses in mcf).

Let us compare the average absolute prediction error of

each model. Prob achieves the highest accuracy, followed
by SDC and FOA (average error of 3.9% vs. 13.2% vs.
18.6%, respectively). The same observation can be made
when comparing the maximum absolute errors: 25% for
Prob, 74% for SDC, and 264% for FOA. Therefore, Prob
achieves a substantially higher accuracy compared to both
SDC and FOA.

Analyzing the errors for different co-schedules, Prob’s pre-
diction errors are larger than 10% only in two cases where
a benchmark suffers a very large increase in cache misses,
such as gzip in gzip+applu (-25% error, 243% extra cache
misses), and gZip in mcf+gzp (22% error, 102% extra
cache misses). Since the model still correctly identifies a
large increase in the number of cache misses, it is less crit-
ical to predict such cases very accurately. Elsewhere, Prob
is able to achieve a very high accuracy, even in cases where
there is a large number of extra cache misses. For example,
in mcf+art, mef has 296% extra cache misses, yet the error
is only 7%. In mcf+swim, mcf has 59% extra cache misses,
yet the error is only -7%. Finally, in gZip+apsi, gzip has
180% error, yet the error is only -9%.

In general, both FOA and SDC are not as accurate as Prob,
although SDC performs better than FOA, with an average
absolute error of 13.2% (vs. 18.6% for FOA), and maxi-
mum absolute error of 74% (vs. 264% for FOA). Unfortu-
nately, the large error not only happens in cases where the
extra number of cache misses is large, but also in cases
where the extra number of cache misses is small. For
example, in mcf+perlbmk, perlbmk has 28% extra cache
misses, and the prediction error is 30% for FOA and 31%
for SDC.

4.2.1. Remaining | naccuracy

To further validate the Prob model, we relax two assump-
tions that we have made in Section 2.1, namely the multi-
level cache inclusion, and the unified L2 cache. The last
two columns in Table 4 shows the prediction error of Prob
when the L2 cache does not maintain inclusion with the L1
data cache (Prob+NI), and when the L2 cache stores both
instructions and data (Prob+Unif). In both cases, we rerun
the simulation and the profiling, and generate new predic-
tions.

For an inclusive L2 cache, the effect of inclusion is ignored

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Table 4. Validation Results. In each co-schedule, the benchmark that finishes to completion is indicated with an asterisk.

Co-schedule Number of Extra L2 Cache Misses L2 Cache Miss Prediction Error (E;)
instructions executed Due to Sharing FOA [SDC | Prob || Prob+NI [Prob+Unif
applu applu 424M 29% 8% -22% 2% 2% 7%
+art art* 12IM 0% 0% 0% 0% 0% 0%
applu applu* 447M 10% 0% 1% 1% 0% 0%
+equake equake 529M 19% 6% 1% 5% 7% 1%
art art* 121M 0% 0% 0% 0% 0% 0%
+equake equake 546M 43% -6% -30% 5% 8% 4%
gzip gzip* 287M 243% -60% -58% -25% -26% -35%
+applu applu 269M 11% 6% 4% 2% 2% 5%
gzip gzip* 287M 180% -62% -64% -9% -9% -11%
+apsi apsi 52M 0% 0% 0% 0% 0% 0%
mcf mcf 177M 296% -4% -74% 7% 12% 4%
+art art* 12IM 0% 0% 0% 0% 0% 0%
mcf mcf* 187M 11% -9% -3% -3% -3% -6%
+equake equake 388M 6% 22% 7% 5% 6% 4%
mcf mcf 176M 18% -5% 1% 7% 7% 6%
+gzip gzip* 287M 102% 264% 25% 22% 22% 21%
mcf mcf 159M 8% -5% -1% -3% -3% -11%
+perlbmk perlbmk* 174M 28% 30% 31% 2% -3% 4%
mst mst 450M 10% 0% -5% 0% 0% -1%
+art art* 12IM 0% 0% 0% 0% 0% 0%
mst mst 530M 25% 4% 4% 3% 3% 2%
+equake equake* 1185M 3% 1% 2% 0% 0% 0%
mst mst 382M 0% 0% 0% 0% 0% -1%
+mcf mcf* 187M 2% 0% 2% 0% 0% 0%
swim swim 261M 0% 0% 0% 0% 0% 0%
+art art* 121IM 0% 0% 0% 0% 0% 0%
mcf mcf* 187M 59% -31% -32% -1% -7% -8%
+swim swim 213M 0% 0% 0% 0% 0% 0%
Minimum Absolute Error (min(|E;|)) 0% 0% 0% 0% 0%
Maximum Absolute Error (max(|E;)) 264% 74% 25% 26% 35%
Avg: Arithmetic Mean of Absolute Error: LT‘IEJ ! 18.6% | 13.2% | 3.9% 4.3% 4.7%
Geom: Geometric Mean of Absolute Error: (II(1 + |E;|)) w1 133% | 11.6% | 3.7% 4.1% 4.4%

by our models. When an inclusive L2 cache replaces a
cache line, the corresponding line in the L1 cache is in-
validated. This may cause extra L1 cache misses that per-
turb the L2 accesses and miss frequencies, which the mod-
els assume to be unchanged. In Prob+NI, we simulate a
non-inclusive L2 cache, thereby removing one source of
possible inaccuracy. The result in Prob+NI shows that the
impact of cache inclusion property is insignificant. The av-
erage error increases by only 0.4% to 4.3%.

Using an L2 cache that stores both data and instructions,
the prediction error in Prob+Unif increases by 0.8% to
4.7%. In some co-schedules, the errors increase slightly,
and in others, the errors decrease slightly. We conclude
that the increase in prediction errors only matter for a small
subset of co-schedules, because in most benchmarks, the
instruction footprint is a lot smaller than the data footprint.

Prob’s remaining inaccuracy may be due to two assump-
tions. We assume that the number of accesses in a circular
sequence of a thread X can be represented accurately by its
expected value (nx in Equation 4). We also assumed that
the number of accesses from an interfering thread Y can
be represented accurately by its expected value (E(ny) in
Equation 6). In addition, the model rounds down E(ny) to
the nearest integer. Relaxing these assumptions requires

treating nx and ny as random variables, which signifi-
cantly complicates the Prob model.

4.3. Sensitivity Study

To observe the impact of L2 cache parameters to the predic-
tion accuracy of the Prob model, we perform two studies.
In the first study, we vary the L2 cache size from 256KB to
1024KB, while keeping the associativity at 8-way. In the
second study, we vary the L2 cache associativity from 4 to
16, while keeping the cache size constant at 512KB. The
results are shown in Table 5 and Table 6, respectively.

An interesting observation is that for a 256KB L2 cache,
the average and the maximum increase in L2 cache misses
is now 283% and 4332%. Therefore, the impact of cache
sharing for a small cache is very significant. In terms of
the average error of Prob for different L2 cache sizes, Ta-
ble 5 shows little variation (4.2% for 256KB, 3.9% for
512KB, and 5.4% for 1MB). However, the error tends to
be correlated with the increase in the number of L2 cache
misses. As discussed earlier, Prob’s large prediction er-
rors only occur when there are large increases in L2 cache
misses. Since, in both 256KB and 1MB cache sizes, the av-
erage increase in L2 cache misses is larger than that in the
512KB cache, the prediction errors are also larger. How-
ever, the maximum absolute error reveals a different trend.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

The maximum error decreases with a larger L2 cache size
(31% for 256KB, 25% for 512KB, and 21% for 1MB), in-
dicating that Prob is more accurate in the worst case for
larger caches. In any case, Prab achieves very good accu-
racy.

Both the FOA and SDC models have large errors. For
256KB cache, SDC performs very poorly, with an aver-
age error of 27.3% and maximum absolute error of 153%.
This is expected as SDC does not take into account the miss
frequency of the benchmarks, which tends to increase with
smaller caches.

Table 5. Prediction accuracy for different cache sizes.

Cache Size, Assoc Extra L2 L2 Miss Prediction
Cache misses Absolute Error (E;)
FOA [SDC [Prab
min 0% 0% 0% 0%
256KB, 8 max 4332% 54% 153% 31%
avg 283% 9.6 % 273% | 4.2%
min 0% 0% 0% 0%
512KB, 8 max 296% 264% 74% 25%
avg 39% 18.6% | 13.2% | 3.9%
min 0% 0% 0% 0%
1024KB, 8 max 363 % 74% 78% 21%
avg 45% 17.7% | 21.1% | 5.4%

Table 6 shows a decreasing average and maximum L2
cache miss increase as the associativity increases, indicat-
ing that higher associativity can tolerate cache sharing im-
pact better. In terms of the average error of Prob, there
is little variation (7.2% for 4-way, 3.9% for 8-way, and
5.1% for 16-way associativity). For a small associativity
(4-way), the larger error is expected because we use E(ny)
instead of treating ny as a random variable. Unfortunately,
for smaller associativity, the value of E(ny) tends to be
smaller too. Since we round it down to the nearest inte-
ger value, this rounding error starts to introduce extra in-
accuracy. For 16-way associativity, the prediction error is
slightly higher than in the 8-way associativity mostly due
to a larger error in one co-schedule. To summarize, for
sufficiently high associativity, Prob remains very accurate.

Table 6. Prediction accuracy for different cache associa-
tivities.

Cache Size, Assoc Extra L2 L2 Miss Prediction
Cache misses Absolute Error (E;)
FOA [SDC [Prab
min 0% 0% 0% 0%
512KB, 4 max 361% 80% 78% 45%
avg 47% 122% | 13.4% | 7.2%
min 0% 0% 0% 0%
512KB, 8 max 296% 264% 74% 25%
avg 39% 18.6% | 13.2% | 3.9%
min 0% 0% 0% 0%
512KB, 16 max 275% 69% 73% 36%
avg 38.1% 11.8% | 125% | 5.1%

4.4. Case Study: Relationship Between Temporal
Reuse Behavior and Cache Sharing I mpact

In this case study, we evaluate how temporal reuse behavior
affects the impact of cache sharing by generating synthetic
stack distance profiles that densely cover a large range of
temporal reuse behavior. To do that, we choose a base
thread and vary the temporal reuse behavior of an inter-
fering thread.

For the base thread, its stack distance profile is synthesized
using a geometric progression: €, = Z,Cy = Zr,C5 =
Zr?,...,C; = Zr*~!, where Z denotes the amplitude,
and 0 < r < 1 denotes the common ratio of the progres-
sion. This is in general a reasonable approximation to an
application’s stack distance profile because more recently
used lines are more likely to be reused than less recently

. y A
used lines. We also choose Cs 4 = Y. 4 Zr' = fﬁr. We
perform three experiments, where in each experiment, we
vary only one of the three factors of the interfering thread

that affects the impact of cache sharing (Section 2.2.2).

In the first experiment, we only vary the reuse frequency
of the interfering thread, by substituting the amplitude
of the interfering thread’s geometric progression with a
new one, Z' = kZ, where the multiplying factor & =
1,1.5,2,...,4. In the second experiment, we only vary the
miss frequency of the interfering thread, by substituting the
interfering thread’s miss frequency with anew one, C{ , =
k x Cs 4, where the multiplying factor £k = 1,1.5,2, ... 4.
In the third experiment, we vary the shape of the stack dis-
tance profile, by substituting the interfering thread’s com-
mon ratio with a new one, r' = 0.5,0.6,0.7,0.8,0.9, 1,
while keeping the reuse and miss frequencies constant.

4 M issFreg M Reuse Freg

400% 7 400%

w
<3
=1
oF
w
<3
=1
\a

200% ZM

100% -

=

o

=1
¢

Nom alized CacheM isses
I
Nom alized CacheM isses

0% T T T T T 1 0% T T T T 1
1 15 2 25 3 35 4 05 06 07 08 09 1
M ultplying Factorof hterfering Comm on Rato of hterfering
Thread Thread
(a) (b)

Figure 8. The impact of cache sharing to a base
thread with a flat stack distance profile (r =
0.9).The circles indicate the case where the in-
terfering and the base threads are identical.

Figure 8 shows the result of the three experiments when the
base thread’s common ratio is 0.9, indicating a mostly flat
stack distance profile. We vary the interfering thread’s miss
and reuse frequency in the x-axes of Figure 8a, and the in-
terfering thread’s common ratio in the x-axes of Figure 8b.
The y-axes of the figure shows the number of extra cache
misses under cache sharing normalized to the amplitude

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

(Z). The circles indicate the case where the parameters of
the interfering and the base threads are identical.

The figure shows that the number of extra misses of the
base thread increases almost linearly with the interfering
thread’s higher miss and reuse frequencies. This is because
the base thread’s effective cache space is reduced, and due
to the flat stack distance profile, the number of misses of
the base thread increases sharply. In terms of the interfer-
ing thread’s common ratio, the more concentrated the in-
terfering thread’s stack distance profile (smaller common
ratio), the fewer extra cache misses the base thread suffers.
This is because if the interfering thread has a more concen-
trated stack distance profile, it retains fewer cache lines that
it brings in the cache, giving more effective cache space to
the base thread. However, the impact of the common ra-
tio of the interfering thread is a lot less significant than the
impact of the miss and reuse frequencies of the interfering
thread.

- M issFreq M Reuse Freg|
30% 1§ 30%
g E 25%
: =
% % 203
o]
= 15% A
: I
10%
§ §
=1 =1
5% 5%
0% T T T T T 1 0% T T T T 1
1 15 2 25 3 35 4 05 06 07 08 09 1
M ultplying Factorof Interfering Comm on Ratio of nterfering
Thread Thread
(a) (b)

Figure 9. The impact of cache sharing to a base
thread with a concentrated stack distance profile
(r = 0.5). The circles indicate the case where the
interfering and the base threads are identical.

Figure 9 is similar to Figure 8 except that the base thread’s
common ratio is 0.5, indicating a very concentrated stack
distance profile. This means the base’s thread working set
is smaller but reused very frequently. The figure shows that
the base thread is not affected at all by the miss frequency
of the interfering thread. This is because the base thread
reuses its working set frequently, causing most of the inter-
fering thread’s cache misses to replace its own lines. How-
ever, if the interfering thread’s reuse frequency increases,
the base thread is unable to keep its working set in the
cache, and suffers from a large cache miss increase. The
same holds true when the interfering thread’s common ra-
tio is increased. Apparently, with a flatter stack distance
profile, the interfering thread increases its effective cache
space, incurring a sharp increase in the base thread’s num-
ber of extra cache misses. However, up to a certain point,
the interfering thread cannot increase its effective cache
space much more, and the base thread’s number of extra
cache misses stabilizes.

Comparing Figure 9 and Figure 8, we can make a few ob-

servations. First, when the base thread’s stack distance pro-
file is more concentrated, it suffers less impact from cache
sharing (10-25% extra cache misses vs. 200-400% extra
cache misses). In addition, the impact of cache sharing on
the base thread is significantly determined by the tempo-
ral reuse behavior of the interfering thread. The interaction
between the base and interfering threads is sometimes not
easily obvious, illustrating the need of the Prob model in
understanding them. Finally, the figures explain why in
Table 4 some applications are (or are not) vulnerable to a
large increase in the number of cache misses under cache
sharing. For example, gzip and mcf are very vulnerable to
a large increase in the number of cache misses under cache
sharing because their stack distance profiles are much flat-
ter than other applications. This is due to mcf’s and gzip’s
good temporal reuse for a high number of LRU stack posi-
tions. Applications that are not vulnerable to this effect are
ones with concentrated stack distance profiles. In addition,
it also explains the variability of the impact of cache shar-
ing on a single application. For example, since applu has
a higher reuse and miss frequency than apsi, gzip suffers a
lot more extra cache misses in gzip+applu compared to in

gzip+apsi.
5. Related Work

Previous performance prediction models only predict the
number of cache misses in a uniprocessor system [24, 3, 5,
6, 4, 26, 12], or predict cache contention on a single pro-
cessor time-shared system [21, 23, 1]. In such a system,
since only one thread runs at any given time, no interfering
effects between threads in the cache is modeled. In con-
trast, this paper presents models that predict the impact of
inter-thread cache sharing on each co-scheduled thread that
shares the cache. As a result, the model can explain cache
contention phenomena that have been observed in a SMT
or CMP system in past studies [7, 22, 10, 25, 7, 13], but
have not been understood well.

The Prob model presented here may be applicable for im-
proving OS thread scheduling decisions. For example,
Snavely et al. rely on discovering the interaction (symbio-
sis) between threads in a SMT system by profiling all pos-
sible co-schedules [17, 16]. Such profiling is unfeasible, or
at least impractical, to implement on a real system due to
the combinatoric explosion of the number of co-schedules
that need to be profiled. If a symbiotic job scheduling is
to be applied in a CMP system, Prob can avoid the need
for such profiling by discovering cache symbiosis between
co-scheduled threads without running the co-schedule.

Suh, et al. [22] and Kim, et. al. [11] have proposed parti-
tioning the shared cache in a CMP system to minimize the
number of cache misses or maximizing fairness. Both stud-
ies assume that a co-schedule is already determined by the
0S8, and the hardware’s task is to optimize the performance
for the given co-schedule. Unfortunately, some problems
such as cache thrashing can only be avoided by the OS’s
judicious co-schedule selection. We view that our models
can be used in a complementary way, where the models can

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

be used to guide the OS scheduler, and their schemes can
optimize the performance of a selected co-schedule further.
This remains a future work.

Finally, the model proposed by Wasserman et al. predicts
the average cache miss penalty of a program on a super-
scalar uniprocessor [26], while that proposed by Solihin
et al. predicts the miss penalty on a multiprocessor sys-
tem [18]. Integrating such models with Prob allow a full
performance model that predicts the impact of cache shar-
ing on IPCs of co-scheduled threads.

6. Conclusions

This work has studied the impact of inter-thread cache
contention on a Chip Multi-Processor (CMP) architecture.
Using a cycle-accurate simulation, we found that cache
contention can significantly increase the number of cache
misses of a thread in a co-schedule and showed that the de-
gree of such contention is highly dependent on the thread
mix in a co-schedule. We have proposed and evaluated two
heuristics-based models and one analytical model that pre-
dict the impact of cache sharing on co-scheduled threads.
The input to our models is the isolated L2 cache stack dis-
tance or circular sequence profiles of each thread, which
can be easily obtained on-line or off-line. The output of
the models is the extra number of L2 cache misses of
each thread that shares the cache. We validated the mod-
els against a cycle-accurate simulation that implements a
dual-core CMP architecture and found that the analytical
Inductive Probability (Prob) model produces very accurate
prediction regardless of the co-schedules and the cache pa-
rameters, with an average error of only 3.9% on a 512KB
8-way associative L2 cache. Finally, the Prob model pro-
vides a valuable and practical tool through which we can
study the impact of cache sharing extensively. We have
presented a case study to demonstrate how different tem-
poral reuse behavior in applications influence the impact
of cache sharing suffered by them. Through the case study,
the Prob model reveals non-obvious interaction between
the applications.

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An Analytical
Cache Model. ACM Trans. on Computer Systems, 1989.

[2] J.-L. Baer and W.-H. Wang. On the Inclusion Properties for
Multi-Level Cache Hierarchies. In Proc. of the Intl. Symp.
on Computer Architecture, 1988.

[3] C. Cascaval, L. DeRose, D. A. Padua, and D. Reed.
Compile-Time Based Performance Prediction. In Proc. of
the 12th Intl. Workshop on Languages and Compilers for
Parallel Computing, 1999.

[4] S. Chatterjee, E. Parker, P. Hanlon, and A. Lebeck. Exact
analysis of the cache behavior of nested loops. In Proc.of
ACM S GPLAN Conf. on Programming Language Design
and Implementation, 2001.

[5] B. Fraguela, R. Doallo, and E. Zapata. Automatic analyti-
cal modeling for the estimation of cache misses. In Proc.of
Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, 1999.

(6]

(7]

(8]
(9]
(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

Proceedings of the 11th Int'| Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: a compiler framework for analyzing and tuning mem-
ory behavior. ACM Trans. on Programming Languages and
Systems, 21(4):703-746, 1999.

S. Hily and A. Seznec. Contention on the 2nd level cache
may limit the effectiveness of simultaneous multithreading.
IRISA Tech. Rep. 1086, 1997.

IBM. IBM Power4 System Architecture White Paper, 2002.
J. Renau, et al. SESC. http://sesc.sourceforge.net, 2004.
M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using prime
numbers for cache indexing to eliminate conflict misses. In
Proc. of the Intl. Symp. on High Performance Computer Ar-
chitecture, 2004.

S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning on a chip multi-processor architecture. In Proc.
of the Intl. Conf. on Parallel Architecture and Compilation
Techniques, 2004.

J. Lee, Y. Solihin, and J. Torrellas. Automatically Mapping
Code on an Intelligent Memory Architecture. In 7th Intl.
Symp. on High Performance Computer Architecture, 2001.
T. Leng, R. Ali, and J. Hsieh. A study of hyper-threading
in high-performance computing clusters. Dell Power Solu-
tions HPC Cluster Environment, pages 33-36, 2002.

R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
Techniques for Storage Hierarchies. |BM Systems Journal,
9(2), 1970.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. In Proc. of the Intl. Symp. on Computer Archi-
tecture (ISCA), 2003.

A. Snavely and D. Tullsen. Symbiotic jobscheduling for
a simultaneous multithreading processor. In Proc. of the
Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, 2000.

A. Snavely, et al. Explorations in symbiosis on two multi-
threaded architectures. In Workshop on Multithreaded Exe-
cution, Architecture, and Compilation, 1999.

Y. Solihin, V. Lam, and J. Torrellas. Scal-tool: Pinpointing
and quantifying scalability bottlenecks in dsm multiproces-
sors. In Supercomputing, 1999.

Y. Solihin, J. Lee, and J. Torrellas. Automatic Code Map-
ping on an Intelligent Memory Architecture. |EEE Trans.
on Computers: special issue on Advances in High Perfor-
mance Memory Systems, 2001.

Standard Performance Evaluation Corporation.
benchmarks. http://mmww.spec.org, 2000.

G. Suh, S. Devadas, and L. Rudolph. Analytical Cache
Models with Applications to Cache Partitioning. In Proc.
of Intl. Conf. on Supercomputing, 2001.

G. E. Suh, S. Devadas, and L. Rudolph. A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In Proc. of Intl. Symp. on High Performance
Computer Architecture, 2002.

D. Thiebaut, H. Stone, and J. Wolf. Footprints in the cache.
ACM Trans. on Computer Systems, 5(4), Nov. 1987.

X. Vera and J. Xue. Let’s Study Whole-Program Cache
Behaviour Analytically. In Proc. of Intl. Symp. on High
Performance Computer Architecture, 2002.

D. Vianney. Hyper-threading speeds linux: Multiprocessor
performance on a single processor. |BM Developer\Works,
2003.

H. J. Wassermann, O. M. Lubeck, Y. Luo, and F. Bas-
setti. Performance Evaluation of the SGI Origin2000: A
Memory-Centric Characterization of LANL ASCI Applica-
tions . In Supercomputing, 1997.

Spec

YF]',F.

COMPUTER
SOCIETY

