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Abstract

In recent years there has been a growing interest in the study of sparse representation of signals.
Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse
linear combinations of these atoms. Applications that use sparse representation are many and include
compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field
concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given
dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from
a pre-specified set of linear transforms, or by adapting the dictionary to a set of training signals. Both
these techniques have been considered, but this topic is largely still open.

In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal
representations. Given a set of training signals, we seek the dictionary that leads to the best representation
for each member in this set, under strict sparsity constraints. We present a new method – the K-SVD
algorithm – generalizing the K-Means clustering process. K-SVD is an iterative method that alternates
between sparse coding of the examples based on the current dictionary, and a process of updating the
dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update
of the sparse representations, thereby accelerating convergence. The K-SVD algorithm is flexible and
can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this
algorithm and demonstrate its results on both synthetic tests and in applications on real image data.

Keywords: K-Means, vector quantization, gain-shape VQ, codebook, K-SVD, training, dictionary, atom

decomposition, sparse representation, basis pursuit, matching pursuit, FOCUSS.
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I. INTRODUCTION

A. Sparse Representation of Signals

Recent years have witnessed a growing interest in the search for sparse representations of signals. Using

an overcomplete dictionary matrix D ∈ IRn×K that contains K prototype signal-atoms for columns,

{dj}K
j=1, a signal y ∈ IRn can be represented as a sparse linear combination of these atoms. The

representation of y may either be exact y = Dx, or approximate, y ≈ Dx, satisfying ‖y − Dx‖p ≤ ε.

The vector x ∈ IRK contains the representation coefficients of the signal y. In approximation methods,

typical norms used for measuring the deviation are the "p-norms for p = 1, 2 and ∞. In this work we

shall concentrate on the case of p = 2.

If n < K and D is a full-rank matrix, an infinite number of solutions are available for the representation

problem, hence constraints on the solution must be set. The solution with the fewest number of nonzero

coefficients is certainly an appealing representation. This sparsest representation is the solution of either

(P0) min
x

‖x‖0 subject to y = Dx, (1)

or

(P0,ε) min
x

‖x‖0 subject to ‖y − Dx‖2 ≤ ε, (2)

where ‖·‖0 is the l0 norm, counting the nonzero entries of a vector.

Applications that can benefit from the sparsity and overcompleteness concepts (together or separately)

include compression, regularization in inverse problems, feature extraction, and more. Indeed, the success

of the JPEG2000 coding standard can be attributed to the sparsity of the wavelet coefficients of

natural images [1]. In denoising, wavelet methods and shift-invariant variations that exploit overcomplete

representation, are among the most effective known algorithms for this task [2], [3], [4], [5]. Sparsity and

overcompleteness have been successfully used for dynamic range compression in images [6], separation

of texture and cartoon content in images [7], [8], inpainting [9], and more.

Extraction of the sparsest representation is a hard problem that has been extensively investigated in the

past few years. We review some of the most popular methods in Section II. In all those methods, there

is a preliminary assumption that the dictionary is known and fixed. In this work we address the issue of

designing the proper dictionary, in order to better fit the sparsity model imposed.
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B. The Choice of the Dictionary

An overcomplete dictionary D that leads to sparse representations can either be chosen as a pre-

specified set of functions, or designed by adapting its content to fit a given set of signal examples.

Choosing a pre-specified transform matrix is appealing because it is simpler. Also, in many cases it

leads to simple and fast algorithms for the evaluation of the sparse representation. This is indeed the case

for overcomplete wavelets, curvelets, contourlets, steerable wavelet filters, short-time-Fourier transforms,

and more. Preference is typically given to tight frames that can easily be pseudo-inverted. The success

of such dictionaries in applications depends on how suitable they are to sparsely describe the signals in

question. Multiscale analysis with oriented basis functions and a shift-invariant property are guidelines

in such constructions.

In this paper we consider a different route for designing dictionaries D based on learning. Our goal

is to find the dictionary D that yields sparse representations for the training signals. We believe that

such dictionaries have the potential to outperform commonly used pre-determined dictionaries. With

ever-growing computational capabilities, computational cost may become secondary in importance to the

improved performance achievable by methods which adapt dictionaries for special classes of signals.

C. Our Paper’s Contribution and Structure

In this paper we present a novel algorithm for adapting dictionaries so as to represent signals sparsely.

Given a set of training signals {yi}N
i=1, we seek the dictionary D that leads to the best possible

representations for each member in this set with strict sparsity constraints. We introduce the K-SVD

algorithm that addresses the above task, generalizing the K-Means algorithm. The K-SVD is an iterative

method that alternates between sparse coding of the examples based on the current dictionary, and an

update process for the dictionary atoms so as to better fit the data. The update of the dictionary columns is

done jointly with an update of the sparse representation coefficients related to it, resulting in accelerated

convergence. The K-SVD algorithm is flexible and can work with any pursuit method, thereby tailoring

the dictionary to the application in mind. In this work we present the K-SVD algorithm, analyze it,

discuss its relation to prior art, and prove its superior performance. We demonstrate the K-SVD results

in both synthetic tests and applications involving real image data.

In Section II we survey pursuit algorithms that are later used by the K-SVD, together with some
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recent theoretical results justifying their use for sparse coding. In Section III we refer to recent work

done in the field of sparse-representation dictionary design, and describe different algorithms that were

proposed for this task. In Section IV we describe our algorithm, its possible variations, and its relation to

previously proposed methods. The K-SVD results on synthetic data are presented in Section V, and some

preliminary applications involving real image data are given in Section VI. We conclude and discuss

future possible research direction in Section VII.

II. SPARSE CODING: PRIOR ART

Sparse coding is the process of computing the representation coefficients, x, based on the given signal

y and the dictionary D. This process, commonly referred to as “atom decomposition”, requires solving

(1) or (2), and this is typically done by a “pursuit algorithm” that finds an approximate solution. In

this section we briefly discuss several such algorithms, and their prospects for success. A more detailed

description of those methods can be found in [10]. Sparse coding is a necessary stage in the K-SVD

method we develop later in this paper, hence it is important to have a good overview of methods for

achieving it.

Exact determination of sparsest representations proves to be an NP-hard problem [11]. Thus,

approximate solutions are considered instead, and in the past decade or so several efficient pursuit

algorithms have been proposed. The simplest ones are the Matching Pursuit (MP) [12] and the Orthogonal

Matching Pursuit (OMP) algorithms [13], [14], [15], [16]. These are greedy algorithms that select the

dictionary atoms sequentially. These methods are very simple, involving the computation of inner products

between the signal and dictionary columns, and possibly deploying some least squares solvers. Both (1)

and (2) are easily addressed by changing the stopping rule of the algorithm.

A second well known pursuit approach is the Basis Pursuit (BP) [17]. It suggests a convexification of

the problems posed in (1) and (2), by replacing the "0-norm with an "1-norm. The Focal Under-determined

System Solver (FOCUSS) is very similar, using the "p-norm with p ≤ 1, as a replacement to the "0-norm

[18], [19], [20], [21]. Here, for p < 1 the similarity to the true sparsity measure is better, but the overall

problem becomes non-convex, giving rise to local minima that may mislead in the search for solutions.

Lagrange multipliers are used to convert the constraint into a penalty term, and an iterative method is

derived based on the idea of iterated reweighed least-squares that handles the "p-norm as an "2 weighted
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norm.

Both the BP and the FOCUSS can be motivated based on Maximum A Posteriori (MAP) estimation,

and indeed several works used this reasoning directly [22], [23], [24], [25]. The MAP can be used to

estimate the coefficients as random variables, by maximizing the posterior P (x|y,D) ∝ P (y|D,x)P (x).

The prior distribution on the coefficient vector x is assumed to be a super-Gaussian iid distribution that

favors sparsity. For the Laplace distribution this approach is equivalent to BP [22].

Extensive study of these algorithms in recent years has established that if the sought solution, x, is

sparse enough, these techniques recover it well in the exact case [16], [26], [27], [28], [29], [30]. Further

work considered the approximated versions and has shown stability in recovery of x [31], [32]. The recent

front of activity revisits those questions within a probabilistic setting, obtaining more realistic assessments

on pursuit algorithm performance and success [33], [34], [35]. The properties of the dictionary D set the

limits on the sparsity of the coefficient vector that consequently leads to its successful evaluation.

III. DESIGN OF DICTIONARIES: PRIOR ART

We now come to the main topic of the paper, the training of dictionaries based on a set of examples.

Given such set Y = {yi}N
i=1, we assume that there exists a dictionary D that gave rise to the given

signal examples via sparse combinations, i.e., we assume that there exists D, so that solving (P0) for each

example yk gives a sparse representation xk. It is in this setting that we ask what the proper dictionary

D is.

A. Generalizing the K-Means?

There is an intriguing relation between sparse representation and clustering (i.e., vector quantization).

This connection has previously been mentioned in several reports [36], [37], [38]. In clustering, a set of

descriptive vectors {dk}K
k=1 is learned, and each sample is represented by one of those vectors (the one

closest to it, usually in the "2 distance measure). We may think of this as an extreme sparse representation,

where only one atom is allowed in the signal decomposition, and furthermore, the coefficient multiplying

it must be 1. There is a variant of the vector quantization (VQ) coding method, called Gain-Shape VQ,

where this coefficient is allowed to vary [39]. In contrast, in sparse representations as discussed in this

paper, each example is represented as a linear combination of several vectors {dk}K
k=1. Thus, sparse

representations can be referred to as a generalization of the clustering problem.
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Since the K-Means algorithm (also known as generalized Lloyd algorithm - GLA [39]) is the most

commonly used procedure for training in the vector quantization setting, it is natural to consider

generalizations of this algorithm when turning to the problem of dictionary training. The clustering

problem and its K-Means solution will be discussed in more detail in section IV-A, since our work

approaches the dictionary training problem by generalizing the K-Means. Here we shall briefly mention

that the K-Means process applies two steps per each iteration: (i) given {dk}K
k=1, assign the training

examples to their nearest neighbor; and (ii) given that assignment, update {dk}K
k=1 to better fit the

examples.

The approaches to dictionary design that have been tried so far are very much in line with the two-

step process described above. The first step finds the coefficients given the dictionary – a step we shall

refer to as “sparse coding”. Then, the dictionary is updated assuming known and fixed coefficients.

The differences between the various algorithms that have been proposed are in the method used for the

calculation of coefficients, and in the procedure used for modifying the dictionary.

B. Maximum Likelihood Methods

The methods reported in [22], [23], [24], [25] use probabilistic reasoning in the construction of D.

The proposed model suggests that for every example y the relation

y = Dx + v, (3)

holds true with a sparse representation x and Gaussian white residual vector v with variance σ2. Given

the examples Y = {yi}N
i=1 these works consider the likelihood function P (Y|D) and seek the dictionary

that maximizes it. Two assumptions are required in order to proceed - the first is that the measurements

are drawn independently, readily providing

P (Y|D) =
N∏

i=1

P (yi|D) . (4)

The second assumption is critical and refers to the “hidden variable” x. The ingredients of the likelihood

function are computed using the relation

P (yi|D) =
∫

P (yi,x|D)dx =
∫

P (yi|x,D) · P (x)dx. (5)
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Returning to the initial assumption in (3), we have

P (yi|x,D) = Const · exp
{

1
2σ2

‖Dx − yi‖2

}
. (6)

The prior distribution of the representation vector x is assumed to be such that the entries of x are

zero-mean iid, with Cauchy [24] or Laplace distributions [22], [23]. Assuming for example a Laplace

distribution we get

P (yi|D) =
∫

P (yi|x,D) · P (x)dx = Const ·
∫

exp
{

1
2σ2

‖Dx − yi‖2

}
· exp {λ‖x‖1} dx (7)

This integration over x is difficult to evaluate, and indeed, Olshausen and Field [23] handled this by

replacing it with the extremal value of P (yi,x|D). The overall problem turns into

D = arg max
D

N∑

i=1

max
xi

{P (yi,xi|D)} = arg min
D

N∑

i=1

min
xi

{
‖Dxi − yi‖2 + λ‖xi‖1

}
. (8)

This problem does not penalize the entries of D as it does for the ones of xi. Thus, the solution will

tend to increase the dictionary entries’ values, in order to allow the coefficients to become closer to zero.

This difficulty has been handled by constraining the "2-norm of each basis element, so that the output

variance of the coefficients is kept at an appropriate level [24].

An iterative method was suggested for solving (8). It includes two main steps in each iteration: (i)

calculate the coefficients xi using a simple gradient descent procedure; and then (ii) update the dictionary

using [24]

D(n+1) = D(n) − η
N∑

i=1

(D(n)xi − yi)xT
i (9)

This idea of iterative refinement, mentioned before as a generalization of the K-Means algorithm, was

later used again by other researchers, with some variations [36], [37], [40], [41], [42].

A different approach to handle the integration in (7) was suggested by Lewicki and Sejnowski [25].

They approximated the posterior as a Gaussian, enabling an analytic solution of the integration. This

allows an objective comparison of different image models (basis or priors). It also removes the need for

the additional re-scaling that enforces the norm constraint. However, this model may be too limited in

describing the true behaviors expected. This technique and closely related ones have been referred to as

approximated ML techniques [37].
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There is an interesting relation between the above method and the Independent Component Analysis

(ICA) algorithm [43]. The latter handles the case of a complete dictionary (the number of elements equals

the dimensionality) without assuming additive noise. The above method is then similar to ICA in that the

algorithm can be interpreted as trying to maximize the mutual information between the inputs (samples)

and the outputs (the coefficients) [24], [22], [25].

C. The MOD Method

An appealing dictionary training algorithm, named Method of Optimal Directions (MOD), is presented

by Engan et. al. [36], [40], [41]. This method follows more closely the K-Means outline, with a sparse

coding stage that uses either the OMP or FOCUSS, followed by an update of the dictionary. The main

contribution of the MOD method is its simple way of updating the dictionary. Assuming that the sparse

coding for each example is known, we define the errors ei = yi −Dxi. The overall representation mean

square error is given by

‖E‖2
F = ‖[e1, e2, . . . , eN ]‖2

F = ‖Y − DX‖2
F . (10)

Here we have concatenated all the examples yi as columns of the matrix Y, and similarly gathered the

representations coefficient vectors xi to build the matrix X. The notation ‖A‖F stands for the Frobenius

Norm, defined as ‖A‖F =
√∑

ij A
2
ij.

Assuming that X is fixed, we can seek an update to D such that the above error is minimized. Taking

the derivative of (10) with respect to D we obtain the relation (Y − DX)XT = 0, leading to

D(n+1) = YX(n)T · (X(n)X(n)T )−1 (11)

MOD is closely related to the work by Olshausen and Field, with improvements both in the sparse

coding and the dictionary update stages. Whereas the work in [23], [24], [22] applies a steepest descent

to evaluate xi, those are evaluated much more efficiently with either OMP or FOCUSS. Similarly, in

updating the dictionary, the update relation given in (11) is the best that can be achieved for fixed X.

The iterative steepest descent update in (9) is far slower. Interestingly, in both stages of the algorithm,

the difference is in deploying a second order (Newtonian) update instead of a first-order one. Looking
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closely at the update relation in (9), it could be written as

D(n+1) = D(n) + ηEX(n)T (12)

= D(n) + η(Y − D(n)X(n))X(n)T = D(n)(I − ηX(n)X(n)T ) + ηYX(n)T .

Using infinitely many iterations of this sort, and using small enough η, this leads to a steady state outcome,

that is exactly the MOD update matrix (11). Thus, while the MOD method assumes known coefficients

at each iteration, and derives the best possible dictionary, the ML method by Olshausen and Field only

gets closer to this best current solution, and then turns to calculate the coefficients. Note, however, that

in both methods a normalization of the dictionary columns is required and done.

D. Maximum A-posteriori Probability Approach

The same researchers that conceived the MOD method also suggested a maximum a-posteriori

probability (MAP) setting for the training of dictionaries, attempting to merge the efficiency of the

MOD with a natural way to take into account preferences in the recovered dictionary. In [37], [41], [42],

[44] a probabilistic point of view is adopted, very similar to the ML methods discussed above. However,

rather than working with the likelihood function P (Y|D), the posterior P (D|Y) is used. Using Bayes

rule, we have P (D|Y) ∝ P (Y|D)P (D), and thus we can use the likelihood expression as before, and

add a prior on the dictionary as a new ingredient.

These works considered several priors P (D) and per each proposed an update formula for the

dictionary. The efficiency of the MOD in these methods is manifested in the efficient sparse coding,

which is carried out with FOCUSS. The proposed algorithms in this family deliberately avoid a direct

minimization with respect to D as in MOD, due to the prohibitive n × n matrix inversion required.

Instead, iterative gradient descent is used.

When no prior is chosen, the update formula is the very one used by Olshausen and Field, as in (9).

A prior that constrains D to have a unit Frobenius norm leads to the update formula

D(n+1) = D(n) + ηEXT + η · tr
(
XETD(n)

)
D(n). (13)

As can be seen, the first two terms are the same ones as in (9). The last term compensates for deviations

from the constraint. This case allows different columns in D to have different norm values. As a
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consequence, columns with small norm values tend to be under-used, as the coefficients they need are

larger and as such more penalized.

This led to the second prior choice, constraining the columns of D to have a unit "2-norm. The new

update equation formed is given by

d(n+1)
i = d(n)

i + η

(
I − d(n)

i d(n)
i

T
)

E · xT
i , (14)

where xT
i is the i-th column in the matrix XT .

Compared to the MOD, this line of work provides slower training algorithms. Simulations reported in

[37], [41], [42], [44] on synthetic and real image data seem to provide encouraging results.

E. Unions of orthogonal bases

The very recent work reported in [45] considers a dictionary composed as a union of orthonormal

bases

D = [D1, D2, ... , DL] ,

where Dj ∈ IRn×n, j = 1, 2, . . . , L are orthonormal matrices. Such a dictionary structure is quite

restrictive, but its updating may potentially be made more efficient.

The coefficients of the sparse representations X can be decomposed to L pieces, each referring to a

different ortho-basis. Thus,

X = [X1, X2, ... , XL]T ,

where Xi is the matrix containing the coefficients of the orthonormal dictionary Di.

One of the major advantages of the union of ortho-bases is the relative simplicity of the pursuit

algorithm needed for the sparse coding stage. The coefficients are found using the Block Coordinate

Relaxation (BCR) algorithm [46]. This is an appealing way to solve (P1,ε) as a sequence of simple

shrinkage steps, such that at each stage Xi is computed, while keeping all the other pieces of X fixed.

Thus, this evaluation amounts to a simple shrinkage.

Assuming known coefficients, the proposed algorithm updates each orthonormal basis Dj sequentially.

The update of Dj is done by first computing the residual matrix

Ej = [e1, e2, . . . , eN ] = Y −
∑

i#=j

DiXi.
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Then, by computing the singular value decomposition of the matrix EjXT
j = UΛVT , the update of

the j-th ortho-basis is done by Dj = UVT . This update rule is obtained by solving a constrained least

squares problem with ‖Ej −DjXj‖2
F as the penalty term, assuming fixed coefficients Xj and error Ej .

The constraint is over the feasible matrices Dj , which are forced to be orthonormal.

This way the proposed algorithm improves each matrix Dj separately, by replacing the role of the

data matrix Y in the residual matrix Ej , as the latter should be represented by this updated basis.

Compared to previously-mentioned training algorithms, the work reported in [45] is different in two

important ways: Beyond the evident difference of using a structured dictionary rather than a free one,

a second major difference is in the proposed sequential update of the dictionary. This update algorithm

reminds of the updates done in the K-means. Interestingly, experimental results reported in [45] show weak

performance compared to previous methods. This might be explained by the the unfavorable coupling of

the dictionary parts and their corresponding coefficients, which is overlooked in the update

F. Summary of The Prior Art

Almost all previous methods can essentially be interpreted as generalizations of the K-Means algorithm,

and yet, there are marked differences between these procedures. In the quest for a successful dictionary

training algorithm, there are several desirable properties:

• Flexibility:The algorithm should be able to run with any pursuit algorithm, and this way enable

choosing the one adequate for the run-time constraints, or the one planned for future usage in

conjunction with the obtained dictionary. Methods that decouple the sparse-coding stage from the

dictionary update readily have such a property. Such is the case with the MOD and the MAP based

methods.

• Simplicity: Much of the appeal of a proposed dictionary training method has to do with how simple

it is, and more specifically, how similar it is to K-Means. We should have an algorithm that may

be regarded as a natural generalization of the K-Means. The algorithm should emulate the ease

with which the K-Means is explainable and implementable. Again, the MOD seems to have made a

substantial progress in this direction, although, as we shall see, there is still room for improvement.

• Efficiency: The proposed algorithm should be numerically efficient and exhibit fast convergence. The

above described methods are all quite slow. The MOD, which has a second-order update formula,
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is nearly impractical in reasonable dimensions, because of the matrix inversion step involved. Also,

in all the above formulations, the dictionary columns are updated before turning to re-evaluate the

coefficients. As we shall see later, this approach inflicts a severe limitation on the training speed.

• Well Defined Objective: For a method to succeed, it should have a well defined objective function

that measures the quality of the solution obtained. This almost trivial fact was overlooked in some

of the preceding work in this field. Hence, even though an algorithm can be designed to greedily

improve the representation MSE and the sparsity, it may happen that the algorithm leads to aimless

oscillations in terms of a global objective measure of quality.

IV. THE K-SVD ALGORITHM

In this section we introduce the K-SVD algorithm for training of dictionaries. This algorithm is flexible,

and works in conjunction with any pursuit algorithm. It is simple, and designed to be a truly direct

generalization of the K-Means. As such, when forced to work with one atom per signal, it trains a

dictionary for the Gain-Shape VQ. When forced to have a unit coefficient for this atom, it exactly

reproduces the K-Means algorithm. The K-SVD is highly efficient, due to an effective sparse coding,

and a Gauss-Seidel-like accelerated dictionary update method. The algorithm’s steps are coherent with

each other, both working towards the minimization of a clear overall objective functional.

We start our discussion with a description of the K-Means, setting the notation for the rest of this

section. While this may seem superfluous, we will use the very description of the K-Means to derive

the K-SVD as its direct extension. We then discuss some of the K-SVD properties and implementation

issues.

A. K-Means algorithm for Vector Quantization

A codebook that includes K codewords (representatives) is used to represent a wide family of vectors

(signals) Y = {yi}N
i=1 (N ) K) by nearest neighbor assignment. This leads to efficient compression

or description of those signals, as clusters in IRn surrounding the chosen codewords. As a side note we

remind the reader that based on the expectation maximization procedure, the K-Means can be extended

to suggest a fuzzy assignment and a covariance matrix per each cluster, so that the data is modelled as

a mixture of Gaussians [47].
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The dictionary of VQ codewords is typically trained using the K-Means algorithm, and as we have

argued before, this has a close resemblance to the problem studied in this paper. We denote the codebook

matrix by C = [c1, c2, . . . , cK ], the codewords being the columns. When C is given, each signal is

represented as its closest codeword (under "2-norm distance). We can write yi = Cxi, where xi = ej

is a vector from the trivial basis, with all zero entries except a one in the j-th position. The index j is

selected such that

∀k #=j ‖yi − Cej‖2
2 ≤ ‖yi − Cek‖2

2.

This is considered as an extreme case of sparse coding in the sense that only one atom is allowed to

participate in the construction of yi, and the coefficient is forced to be 1. The representation MSE per

yi is defined as e2
i = ‖yi − Cxi‖2

2, and the overall MSE is

E =
K∑

i=1

e2
i = ‖Y − CX‖2

F . (15)

The VQ training problem is to find a codebook C that minimizes the error E, subject to the limited

structure of X, whose columns must be taken from the trivial basis,

min
C,X

{
‖Y − CX‖2

F

}
subject to ∀i, xi = ek for some k. (16)

The K-Means algorithm is an iterative method used for designing the optimal codebook for VQ [39].

In each iteration there are two stages - one for sparse coding that essentially evaluates X, and one for

updating the codebook. Figure 1 gives a more detailed description of these steps.

The sparse coding stage assumes a known codebook C(J−1), and computes a feasible X that minimizes

the value of (16). Similarly, the dictionary update stage fixes X as known, and seeks an update of C so

as to minimize (16). Clearly, at each iteration either a reduction or no change in the MSE is ensured.

Furthermore, at each such stage, the minimization step is optimal under the assumptions. As the MSE is

bounded from below by zero, and the algorithm ensures a monotonic decrease of the MSE, convergence

to at least a local minimum solution is guaranteed. Note that we have deliberately chosen not to discuss

stopping rules for the above-described algorithm, since those vary a lot but are quite easy to handle [39].

B. K-SVD - Generalizing the K-Means

The sparse representation problem can be viewed as a generalization of the VQ objective (16), in

which we allow each input signal to be represented by a linear combination of codewords, which we
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Task: Find the best possible codebook to represent the data samples
{yi}N

i=1 by nearest neighbor, by solving

min
C,X

{
‖Y − CX‖2

F

}
subject to ∀i, xi = ek for some k.

Initialization : Set the codebook matrix C(0) ∈ IRn×K . Set J = 1.
Repeat until convergence (use stop rule):

• Sparse Coding Stage: Partition the training samples Y into K sets

(R(J−1)
1 , R(J−1)

2 , . . . , R(J−1)
K ),

each holding the sample indices most similar to the column c(J−1)
k ,

R(J−1)
k =

{
i | ∀ l #=k, ‖yi − c(J−1)

k ‖2 < ‖yi − c(J−1)
l ‖2

}
.

• Codebook Update Stage: For each column k in C(J−1), update it by

c(J)
k =

1
|Rk|

∑

i∈R(J−1)
k

yi.

• Set J = J + 1.

Fig. 1. The K-Means Algorithm

now call dictionary elements. Therefore the coefficients vector is now allowed more than one nonzero

entry, and these can have arbitrary values. For this case, the minimization corresponding to Equation (16)

is that of searching the best possible dictionary for the sparse representation of the example set Y,

min
D,X

{
‖Y − DX‖2

F

}
subject to ∀i, ‖xi‖0 ≤ T0. (17)

A similar objective could alternatively be met by considering

min
D,X

∑

i

‖xi‖0 subject to ‖Y − DX‖2
F ≤ ε, (18)

for a fixed value ε. In this paper we mainly discuss the first problem (17), although the treatment is very

similar.

In our algorithm we minimize the expression in (17) iteratively. First, we fix D and aim to find the

best coefficient matrix X that can be found. As finding the truly optimal X is impossible, we use an

approximation pursuit method. Any such algorithm can be used for the calculation of the coefficients, as

long as it can supply a solution with a fixed and predetermined number of nonzero entries, T0.

Once the sparse coding task is done, a second stage is performed to search for a better dictionary. This

process updates one column at a time, fixing all columns in D except one, dk, and finding a new column
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d̃k and new values for its coefficients that best reduce the MSE. This is markedly different from all the

K-Means generalizations that were described in Section III. All those methods freeze X while finding a

better D. Our approach is different, as we change the columns of D sequentially, and allow changing the

relevant coefficients. In a sense, this approach is a more direct generalization of the K-Means algorithm,

because it updates each column separately, as done in K-Means. One may argue that in K-Means the

nonzero entries in X are fixed during the improvement of ck, but as we shall see next, this is true because

in the K-Means (and the gain-shape VQ), the columns’ update problems are decoupled, whereas in the

more general setting this should not be the case.

The process of updating only one column of D at a time is a problem having a straightforward solution

based on the singular value decomposition (SVD). Furthermore, allowing a change in the coefficients’

values while updating the dictionary columns accelerates convergence, since the subsequent columns

updates will be based on more relevant coefficients. The overall effect is very much in line with the leap

from gradient descent to Gauss-Seidel methods in optimization.

Here one might be tempted to suggest skipping the step of sparse coding, and using only updates of

columns in D, along with their coefficients, applied in a cyclic fashion, again and again. This however

will not work well, as the support of the representations will never be changed, and such an algorithm

will necessarily fall into a local minimum trap.

C. K-SVD - Detailed Description

We shall now discuss the K-SVD in detail. Recall that our objective function is

min
D,X

{
‖Y − DX‖2

F

}
subject to ∀i, ‖xi‖0 ≤ T0. (19)

Let us first consider the sparse coding stage, where we assume that D is fixed, and consider the above

optimization problem as a search for sparse representations with coefficients summarized in the matrix

X. The penalty term can be rewritten as

‖Y − DX‖2
F =

N∑

i=1

‖yi − Dxi‖2
2.

Therefore the problem posed in (19) can be decoupled to N distinct problems of the form

i = 1, 2, . . . , N, min
xi

{
‖yi − Dxi‖2

2

}
subject to ‖xi‖0 ≤ T0. (20)
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This problem is adequately addressed by the pursuit algorithms discussed in Section II, and we have seen

that if T0 is small enough, their solution is a good approximation to the ideal one that is numerically

infeasible to compute.

We now turn to the second, and slightly more involved process of updating the dictionary together

with the nonzero coefficients. Assume that both X and D are fixed, and we put in question only one

column in the dictionary, dk, and the coefficients that correspond to it, the i-th row in X, denoted as xi
T

(this is not the vector xi which is the i-th column in X). Returning to the objective function (19), the

penalty term can be rewritten as

‖Y − DX‖2
F =

∥∥∥∥∥∥
Y −

K∑

j=1

djx
j
T

∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥



Y −
∑

j #=k

djx
j
T



 − dkxk
T

∥∥∥∥∥∥

2

F

=
∥∥∥Ek − dkxk

T

∥∥∥
2

F
. (21)

We have decomposed the multiplication DX to the sum of K rank-1 matrices. Among those, K − 1

terms are assumed fixed, and one – the k-th – remains in question. The matrix Ek stands for the error

for all the N examples when the k-th atom is removed. Note the resemblance between this error and the

one defined in [45].

Here, it would be tempting to suggest the use of the SVD to find alternative dk and xk
T . The SVD finds

the closest rank-1 matrix (in Frobenius norm) that approximates Ek, and this will effectively minimize

the error as defined in (21). However, such a step will be a mistake, because the new vector xk
T is very

likely to be filled, since in such an update of dk we do not enforce the sparsity constraint.

A remedy to the above problem, however, is simple and also quite intuitive. Define ωi as the group

of indices pointing to examples {yi} that use the atom dk, i.e., those where xk
T (i) is nonzero. Thus,

ωk = {i| 1 ≤ i ≤ K, xk
T (i) += 0}. (22)

Define Ωk as a matrix of size N × |ωi|, with ones on the (ωk(i), i)-th entries, and zeros elsewhere. When

multiplying xk
R = xk

TΩk, this shrinks the row vector xk
T by discarding of the zero entries, resulting

with the row vector xk
R of length |ωk|. Similarly, the multiplication YR

k = YΩk creates a matrix of size

n × |ωk| that includes a subset of the examples that are currently using the dk atom. The same effect

happens with ER
k = EkΩk, implying a selection of error columns that correspond to examples that use

the atom dk.

With this notation, we may now return to (21) and suggest minimization with respect to both dk and
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xk
T , but this time force the solution of x̃k

T to have the same support as the original xk
T . This is equivalent

to the minimization of

∥∥∥EkΩk − dkxk
TΩk

∥∥∥
2

F
=

∥∥∥ER
k − dkxk

R

∥∥∥
2

F
, (23)

and this time it can be done directly via SVD. Taking the restricted matrix ER
k , SVD decomposes it to

ER
k = U∆VT . We define the solution for d̃k as the first column of U, and the coefficient vector xk

R as

the first column of V multiplied by ∆(1, 1). Note that in this solution we necessarily have that (i) the

columns of D remain normalized; and (ii) the support of all representations either stays the same or gets

smaller by possible nulling of terms.

We shall call this algorithm “K-SVD” to parallel the name K-Means. While K-Means applies K

computations of means to update the codebook, the K-SVD obtains the updated dictionary by K SVD

computations, each determining one column. A full description of the algorithm is given in Figure 2.

In the K-SVD algorithm we sweep through the columns and use always the most updated coefficients

as they emerge from preceding SVD steps. Parallel versions of this algorithm can also be considered,

where all updates of the previous dictionary are done based on the same X. Experiments show that while

this version also converges, it yields an inferior solution, and typically requires more than 4 times the

number of iterations.

An important question that arises is: Will the K-SVD algorithm converge? Let us first assume we can

perform the sparse coding stage perfectly, retrieving the best approximation to the signal yi that contains

no more than T0 nonzero entries. In this case, and assuming a fixed dictionary D, each sparse coding step

decreases the total representation error ‖Y−DX‖2
F , posed in (19). Moreover, at the update step for dk,

an additional reduction or no change in the MSE is guaranteed, while not violating the sparsity constraint.

Executing a series of such steps ensures a monotonic MSE reduction, and therefore, convergence to a

local minimum is guaranteed.

Unfortunately, the above claim depends on the success of pursuit algorithms to robustly approximate

the solution to (20), and thus convergence is not always guaranteed. However, when T0 is small enough

relative to n, the OMP, FOCUSS, and BP approximating methods are known to perform very well1. In

1While OMP can be naturally used to get a fixed and pre-determined number of non-zeros (T0), both BP and FOCUSS
require some slight modifications. For example, in using FOCUSS to lead to T0 non-zeros, the regularization parameter should
be adapted while iterating.
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Task: Find the best dictionary to represent the data samples {yi}N
i=1 as

sparse compositions, by solving

min
D,X

{
‖Y − DX‖2

F

}
subject to ∀i, ‖xi‖0 ≤ T0.

Initialization : Set the dictionary matrix D(0) ∈ IRn×K with !2 normalized
columns. Set J = 1.
Repeat until convergence (stopping rule):

• Sparse Coding Stage: Use any pursuit algorithm to compute the
representation vectors xi for each example yi, by approximating the
solution of

i = 1, 2, . . . , N, min
xi

{
‖yi − Dxi‖2

2

}
subject to ‖xk‖0 ≤ T0.

• Codebook Update Stage: For each column k = 1, 2, . . . ,K in D(J−1),
update it by
– Define the group of examples that use this atom, ωk = {i| 1 ≤ i ≤

N, xk
T (i) &= 0}.

– Compute the overall representation error matrix, Ek, by

Ek = Y −
∑

j #=k

djx
j
T .

– Restrict Ek by choosing only the columns corresponding to ωk, and
obtain ER

k .
– Apply SVD decomposition ER

k = U∆VT . Choose the updated
dictionary column d̃k to be the first column of U. Update the
coefficient vector xk

R to be the first column of V multiplied by
∆(1, 1).

• Set J = J + 1.

Fig. 2. The K-SVD Algorithm.

those circumstances the convergence is guaranteed. We can ensure convergence by external interference

- by comparing the best solution using the already given support to the one proposed by the new run

of the pursuit algorithm, and adopting the better one. This way we shall always get an improvement.

Practically, we saw in all our experiments that a convergence is reached, and there was no need for such

external interference.

D. From K-SVD Back to K-Means

What happens when the model order T0 = 1? This case corresponds to the gain-shape VQ, and as such

it is important, as the K-SVD becomes a method for its codebook training. When T0 = 1 the coefficient
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matrix X has only one nonzero entry per column. Thus, computing the error ER
k in (23), yields

ER
k = EkΩk =



Y −
∑

j #=k

djx
j
T



Ωk = YΩk = YR
k . (24)

This is because the restriction Ωk takes only those columns in Ek that use the dk atom, and thus

necessarily, they use no other atoms, implying that for all j, xj
TΩk = 0.

The implication of the above outcome is that the SVD in the T0 = 1 case is done directly on the

group of examples in ωk. Also, the K updates of the columns of D become independent of each other,

implying that a sequential process as before, or a parallel one, both lead to the same algorithm. We

mentioned before that the K-Means update of the cluster centroids could be interpreted as a sequential

process, and the discussion here sheds some further light on this interpretation.

We could further constraint our representation stage and beyond the choice T0 = 1, limit the nonzero

entries of X to be 1. This brings us back to the classical clustering problem as described earlier. In this

case we have that xk
R is filled with ones, thus xk

R = 1T . The K-SVD then needs to approximate the

restricted error matrix ER
k = YR

k by a rank-1 matrix dk · 1T . The solution is the mean of the columns

of YR
k , exactly as K-Means suggests.

E. K-SVD - Implementation Details

Just like the K-Means, the K-SVD algorithm is susceptible to local minimum traps. Our experiments

show that improved results can be reached if the following variations are applied:

• When using approximation methods with a fixed number of coefficients, we found out that FOCUSS

proves to be the best in terms of getting the best out of each iteration. However, from a run-time

point of view, OMP was found to lead to far more efficient overall algorithm.

• When a dictionary element is not being used ‘enough’ (relative to the number of dictionary elements

and to the number of samples) it could be replaced with the least represented data element, after

being normalized (the representation is measured without the dictionary element that is going to be

replaced). Since the number of data elements is much larger than the number of dictionary elements,

and since our model assumption suggests that the dictionary atoms are of equal importance, such

replacement is very effective in avoiding local minima and over-fitting.

• Similar to the idea of removal of unpopular elements from the dictionary, we found that it is very

effective to prune the dictionary from having too-close elements. If indeed such a pair of atoms
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is found (based on their absolute inner product exceeding some threshold), one of those elements

should be removed and replaced with the least-represented signal.

Similarly to the K-Means, we can propose a variety of techniques to further improve the K-SVD

algorithm. Most appealing on this list are multi-scale approaches, and tree-based training where the

number of columns K is allowed to increase during the algorithm. We have not yet tested these options,

and leave these matters for future work.

V. SYNTHETIC EXPERIMENTS

As in previously reported works [37], [45], we first try the K-SVD algorithm on synthetic signals, to

test whether this algorithm recovers the original dictionary that generated the data, and to compare its

results with other reported algorithms.

Generation of the data to train on: A random matrix D (referred to later-on as the generating dictionary)

of size 20 × 50 was generated with iid uniformly distributed entries. Each column was normalized to

a unit "2-norm. Then, 1500 data signals {yi}1500
i=1 of dimension 20 were produced, each created by a

linear combination of 3 different generating dictionary atoms, with uniformly distributed iid coefficients

in random and independent locations. White Gaussian noise with varying SNR was added to the resulting

data signals.

Applying the K-SVD: The dictionary was initialized with data signals. The coefficients were found using

OMP with fixed number of 3 coefficients. The maximum number of iterations was set to 80.

Comparison to other reported works: We implemented the MOD algorithm, and applied it on the same

data, using OMP with fixed number of 3 coefficients, and initializing in the same way. We executed the

MOD algorithm for a total number of 80 iterations. We also executed the MAP-based algorithm of Rao and

Kreutz-Delgado [37]2. This algorithm was executed as is, therefore using FOCUSS as its decomposition

method. Here, again, a maximum of 80 iterations were allowed.

Results: The computed dictionary was compared against the known generating dictionary. This compar-

ison was done by sweeping through the columns of the generating dictionary, and finding the closest

column (in "2 distance) in the computed dictionary, measuring the distance via

1 − |dT
i d̃i|, (25)

2The authors of [37] have generously shared their software with us.
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where di is a generating dictionary atom, and d̃i is its corresponding element in the recovered dictionary.

A distance less than 0.01 was considered a success. All trials were repeated 50 times, and the number of

successes in each trial was computed. The results for the three algorithms and for noise levels of 10dB,

20dB, 30dB and ∞dB (no noise) are displayed in Figure 3.

   10      20      30   No Noise
15

20

25

30

35

40

45

50

KSVD
MOD
MAP−based

Fig. 3. Synthetic results: for each of the tested algorithms and for each noise level, 50 trials were conducted, and their results
sorted. The graph labels represent the mean number of detected atoms (out of 50) over the ordered tests in groups of 10
experiment.

We should note that for different dictionary size (e.g., 20× 30) and with more executed iterations, the

MAP-based algorithm improves and get closer to the K-SVD detection rates.

VI. APPLICATIONS TO IMAGE PROCESSING - PRELIMINARY RESULTS

We carried out several experiments on natural image data, trying to show the practicality of the proposed

algorithm and the general sparse coding theme. We should emphasize that our tests here come only to

prove the concept of using such dictionaries with sparse representations. Further work is required to fully

deploy the proposed techniques in large-scale image processing applications.

Training Data: The training data was constructed as a set of 11, 000 examples of block patches of size

8 × 8 pixels, taken from a database of face images (in various locations). A random collection of 500

such blocks, sorted by their variance, is presented in Figure 4.

Removal of the DC: Working with real images data we preferred that all dictionary elements except

one has a zero mean. The same measure was practiced by previous work [23]. For this purpose, the first
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dictionary element, denoted as the DC, was set to include a constant value in all its entries, and was

not changed afterwards. The DC takes part in all representations, and as a result, all other dictionary

elements remain with zero mean during all iterations.

Running the K-SVD: We applied the K-SVD, training a dictionary of size 64×441. The choice K = 441

came from our attempt to compare the outcome to the overcomplete Haar dictionary of the same size (see

the following section). The coefficients were computed using the OMP with fixed number of coefficients,

were the maximal number of coefficients is 10. Note that better performance can be obtained by switching

to FOCUSS. We concentrated on OMP because of its simplicity and fast execution. The trained dictionary

is presented in the left side of Figure 5.

Comparison Dictionaries: The trained dictionary was compared with the overcomplete Haar dictionary

which includes separable basis functions, having steps of various sizes and in all locations (total of 441

elements). In addition, we build an overcomplete separable version of the DCT dictionary by sampling the

cosine wave in different frequencies to result a total of 441 elements. The overcomplete Haar dictionary

and the overcomplete DCT dictionary are presented in the middle and right side of Figure 5, respectively.

Applications: We used the K-SVD results, denoted here as the learned dictionary, for two different

applications on images. All tests were performed on one face image which was not included in the

training set. The first application is filling-in missing pixels: we deleted random pixels in the image, and

filled their values using the various dictionaries decomposition. We then tested the compression potential

of the learned dictionary decomposition, and presented a rate-distortion graph. We hereafter describe

those experiments in more detail.

Fig. 4. A collection of 500 random blocks that were used for training, sorted by their variance.
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Fig. 5. The learned dictionary (left). Its elements are sorted in an ascending order of their variance, and stretched to maximal
range for display purposes. The overcomplete separable Haar dictionary (middle), and the overcomplete DCT dictionary (right)
are used for comparison.

A. Filling-In Missing Pixels

We chose one random full face image, which consists of 594 non-overlapping blocks (none of which

were used for training). For each block, the following procedure was conducted for r in the range

{0.2, 0.9}:

1) A fraction r of the pixels in each block, in random locations, were deleted (set to zero).

2) The coefficients of the corrupted block under the learned dictionary, the overcomplete Haar

dictionary, and the overcomplete DCT dictionary were found using OMP with an error bound

of ‖0.02 · 1‖2, where 1 ∈ Rn is a vector of all ones3, (allowing an error of ±5 gray-values in

8-bit images). All projections in the OMP algorithm included only the non-corrupted pixels, and

for this purpose, the dictionary elements were normalized so that the non-corrupted indices in each

dictionary element have a unit norm. The resulting coefficient vector of the block B is denoted

xB.

3) The reconstructed block B̃ was chosen as B̃ = D · xB.

4) The reconstruction error was set to:
√
‖B − B̃‖2

F /64 (64 is the number of pixels in each block).

The mean reconstruction errors (for all blocks and all corruption rates) were computed, and are displayed

in Figure 6. Two corrupted images and their reconstructions can be seen in Figure 7. As can be seen,

3The input image is scald to the dynamic range [0, 1].
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higher quality recovery is obtained using the learned dictionary.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

Ratio of Corrupted Pixels in Image

RM
SE

K−SVD results
Overcomplete Haar Wavelet results
Overcomplete DCT results

Fig. 6. The RMSE for 594 new blocks with missing pixels using the learned dictionary, overcomplete Haar dictionary, and
overcomplete DCT dictionary.

B. Compression

A compression comparison was conducted between the overcomplete learned dictionary, the overcom-

plete Haar dictionary, and the overcomplete DCT dictionary (as explain before), all of size 64× 441. In

addition, we compared to the regular (unitary) DCT dictionary (used by the JPEG algorithm). The resulted

rate-distortion graph is presented in Figure 8. In this compression test, the face image was partitioned

(again) into 594 disjoint 8× 8 blocks. All blocks were coded in various rates (bits-per-pixel values), and

the PSNR was measured. Let I be the original image and Ĩ be the coded image, combined by all the

coded blocks. We denote e2 as the mean squared error between I and Ĩ, and

PSNR = 10 · log10

(
1
e2

)
. (26)

In each test we set an error goal ε, and fixed the number of bits-per-coefficient Q. For each such pair of

parameters, all blocks were coded in order to achieve the desired error goal, and the coefficients were

quantized to the desired number of bits (uniform quantization, using upper and lower bounds for each

coefficient in each dictionary based on the training set coefficients). For the overcomplete dictionaries,
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50 % missing pixels

Learned reconstruction
Average # coeffs: 4.0202

MAE: 0.012977
RMSE: 0.029204

Haar reconstruction
Average # coeffs: 4.7677

MAE: 0.022833
RMSE: 0.071107

OverComplete DCT reconstruction
Average # coeffs: 4.7694

MAE: 0.015719
RMSE: 0.037745

70 % missing pixels

Learned reconstruction
Average # coeffs: 3.5623

MAE: 0.020035
RMSE: 0.055643

Haar reconstruction
Average # coeffs: 3.9747

MAE: 0.032831
RMSE: 0.097571

OverComplete DCT reconstruction
Average # coeffs: 4.0539

MAE: 0.025001
RMSE: 0.063086

Fig. 7. The corrupted image (left) with the missing pixels marked as points, and the reconstructed results by the learned
dictionary, the overcomplete Haar dictionary, and the overcomplete DCT dictionary, respectively. The different rows are for 50%
and 70% of missing pixels.

we used the OMP coding method. The rate value was defined as

R =
a · 'Blocks + 'coefs · (b + Q)

'pixels
, (27)

where

• a holds the required number of bits to code the number of coefficients for each block.

• b holds the required number of bits to code the index of the representing atom. Both a and b values

were calculated using an entropy coder.

• 'Blocks is the number of blocks in the image (594).

• 'coefs is the total number of coefficients required to represent the whole image.

• 'pixels is the number of pixels in the image (= 64 · 'Blocks).

In the unitary DCT dictionary we picked the coefficients in a zig-zag order, as done by JPEG, until

the error bound ε is reached. Therefore, the index of each atom should not be coded, and the rate was

defined by,

R =
a · 'Blocks + 'coefs · Q

'pixels
, (28)
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Fig. 8. Compression results: Rate-Distortion graphs.

with the same notation as before.

By sweeping through various values of ε and Q we get per each dictionary several curves in the R-D

plane. Figure 8 presents the best obtained R-D curves for each dictionary. As can be seen, the K-SVD

dictionary outperforms all other dictionaries, and achieves up to 1 − 2dB better for bit rates less than

1.5 bits-per-pixel (where the sparsity model holds true). Samples results are presented in Figure 9.

K−SVD dictionary
8 bits per coefficients

PSNR =34.1564
Rate = 0.70651 BPP

Overcomplete DCT dictionary
8 bits per coefficients

PSNR =32.4021
Rate = 0.69419 BPP

Complete DCT dictionary
8 bits per coefficients

PSNR =32.3917
Rate = 0.70302 BPP

Fig. 9. Sample compression results.
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VII. CONCLUSIONS

In this paper we addressed the problem of generating and using overcomplete dictionaries. We presented

an algorithm – the K-SVD – for training an overcomplete dictionary that best suits a set of given signals.

This algorithm is a generalization of the K-Means, designed to solve a similar, but constrained problem.

We have shown that the dictionary found by the K-SVD performs well for both synthetic and real images

in applications such as filling-in missing pixels and compression, and out-performs alternatives such as

the non-decimated Haar, and overcomplete or unitary DCT.

We believe this kind of dictionaries, which nowadays are not being commonly used, can successfully

replace popular representation methods both in image enhancement and in compression. Future work

is required to enable such trend. Among the many possible research directions we mention three: (i)

exploration of the connection between the chosen pursuit method in the K-SVD and the method used

later in the application; (ii) a study of the effect of introducing weights to the atoms, allowing them to

get varying degrees of popularity (in a way we have used this notion when we separated the DC in our

experiments); and (iii) handling the scalability problem of the K-SVD, when turning to work with larger

image patches.
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