Understanding simhwrt
Output

Nevember 22, 2011

CS6965 Fall 11

Simulator Updates

* You may or may not want to grab the
latest update...

* |f you have changed the simulator code
for your project, it might conflict

» Updates include small improvements to
the way output is printed

— And texture support, which most don’t need

Performance Analysis

» Part of your final project will be analyzing HW/
SW performance

* This will include:
— Where is your program spending time?
— What is causing stalls?
— What HW changes (if any) might help?
— Just find something “interesting”

* Document describing your findings/analysis

Performance Analysis

* We will send out an “assignment” pdf with
more details of the analysis we want

« Step 1: Make sure your code runs in simhwrt
(as you develop)

— If not, we will help you fix it

« Step 2: Gather and interpret data

simhwrt output

When running with a full chip, simhwrt spits
out a ton of numbers

You will want to redirect stdout to a file
./simhwrt ... > output.txt

Most of the output is formatted to be inserted
In to a spreadsheet

— Keeping it as a text file may be sufficient though

simhwrt output

» All example output in these slides was
generated with the following chip:

—--num-thread-procs 4 --num-cores
10 ——num-12s 2

I'm using a smaller chip mostly so that
numbers will fit on slides

* You will want to use the full chip, or
something like it

Header Info

* The first part of the output is all data
describing the simulation/scene
— You can pretty much ignore this

« Useful data starts here:
<=== Core Q) ===>

Thread Status, CPI

<=== Core 0 ===>
---- Thread 00 ----

PC 5: Stalled 696358 in-flight CPI 1.2999 -- Total Cycles 906000
---- Thread 01 ----

PC 5: Stalled 693510 in-flight CPI 1.3053 -- Total Cycles 906000
---- Thread 02 ----

PC 5: Stalled - 694825 in-flight CPI 1.3028 -- Total Cycles 906000
- Thread 03 ----
PC 5: Stalled --—- 691985 in-flight CPI 1.3081 -- Total Cycles 906000

Total CP10.3260 , IPC 3.0675 -- Total Cycles 906000

Thread Status, CPI

Current status of the thread

“‘PC 5: Stalled”
— Program counter 5 = HALT instruction

Total instructions issued
“696358 in-flight”

Cycles per instruction (per thread)
“CPI1 1.2999”

Total CPI / IPC is TM-wide

Total cycles
“Total Cycles 906000”

Total Cycles

« Keep in mind, all threads’ clocks cycle
simultaneously

 All threads in the TM have to run as long as
the longest running thread

Profile Data

kernel thread(called, cycles)
0 1 2 3
0 205,615 204, 612 201, 603 205, 615
1 205, 15580 204, 15506 201, 15283 205, 15593
2 205,398303 204, 402263 201, 406379 205, 398070

» My code has 3 profile kernels
— 0: computing i, | pixel coordinates from atomicinc
— 1: generating camera ray
— 2: complete call to shading

« Use the profile(int) Iintrinsic

Profile Parallelism

* For a sufficiently large amount of work, any
given thread’s profile numbers will be close to

average
205, 398303 204, 402263 201, 406379 205, 398070

On average the machine spent ~400K cycles
on shading

This program took 906958 total parallel clock
cycles
— Shading is about 44% of the work

— Don’t necessarily need to look at every core

Data Dependence Stalls

Data dependence stalls (caused by):
FPADD 11205 (2.462 %)
FPMUL 39165 8.605 %)
LOAD 12 0.003 %)

FPDIV 325411 71.497 %)
DIV 15542 3.415 %)
FPRSUB 1636 (0.359 %)

(

(
FPINVSQRT 62168 (13.659 %)

(

(

« Stalls are counted per-thread (“thread-cycles”)

Data Dependence Stalls

FPADD 11205 (2.462 %)

» Total cycles that instruction’s input data was
not ready

— (and percentage of data dependence cycles)

* Could be due to waiting on the result of a
slow instruction (divide, etc)

* Could be waiting on a cache-missed load

Resource Contention

Number of thread-cycles contention found when issuing:
FPMUL 418 (0.196 %)
FPMIN 44927 (21.109 %)
LOAD 27476 (12.910 %)
FPINVSQRT 12 (0.006 %)
STORE 2172 (1.021 %)
ADDI 3619 (1.700 %)
ANDI 22 (0.010 %)

« “thread-cycles” means it counts all stalls, even if they
happened in parallel

— This number can be greater than total clock cycles

Resource Contention

FPDIV 131 (0.062 %)

» Total thread-cycles that instruction was
unable to issue because the unit was already
In use

* Only have 1 shared divide unit, if more than 1
tries to issue on same cycle, stall

* Also caused by cache bank conflicts

Resource Contention

This number also includes write hazards
— “pipeline hazards”

The register file only has 1 write port

If a slow instruction finishes at the same time
as a fast one issued later

— Can only write 1 register at a time

This is typically a small percent of FU stalls

Instruction Count

Dynamic Instruction Mix: (2948634 total)
ADD 64744 (2.196 %)
MUL 822 (0.028 %)
BITOR 59768 (2.027 %)
FPADD 64633 (2.192 %)
FPMUL 297742 (10.098 %)
FPMIN 112330 (3.810 %)

* Also counted per-thread
— More instructions than total cycles

Issue Breakdown

--Average #threads Issuing each cycle: 3.0691

--Total thread-cycles: 3624156

--total thread-cycles issued: 2780726 (76.727547%)
--iCache conflicts: 719 (0.019839%)

--thread*cycles of FU dependence: 213057 (5.878803%)
--thread*cycles of data dependence: 455533 (12.569354%)
--thread*cycles halted: 4395 (0.121270%)

Issue breakdown:

--thread*cycles of issue worked: 2780726 (76.727547%)
--thread*cycles of issue failed: 673704 (18.589266%)
--thread*cycles of issue NOP/other: 169726 (4.683187%)

Work Allocation

ATOMIC _INC called by threads:
0: 203
1: 204
2: 207
3: 208

* |deally the difference between the highest
and lowest is a small percent

* Otherwise you have a lot of idle threads
— i.e. not enough work for the machine to do

Module Utilization

Core O
Module Utilization

FP AddSub: 3.72
FP MinMax: 0.77
FP Compare: 0.51
Int AddSub: 2.26
FP Mul: 4.11
Int Mul: 0.14
FP InvSqrt: 0.77
FP Div: 2.20
Conversion Unit: 0.01

« Percentage of total issue capacity used

Module Utilization

* |If these numbers are high (100%), you will

likely reduce stalls by adding more units
— At the cost of more area

— More FU downtime

* You may want to minimize OR maximize this
number

* For good performance per area, utilization is
around 50%

L1 Cache Performance

1 accesses: 4450236

1 hits: 4400564

1 misses: 49672

1 bank conflicts: 58095

1 stores: 49152

1 near hit: O (ignore this)
1 hit rate: 0.988838

 These are averages for each TM
* Only reported chip-wide

L2 Cache Performance

-= L2 #0 =-

|2 accesses: 24848

|2 hits: 234

|2 MISSeS: 24614

|2 stores: 24588

|2 bank conflicts: 190

|2 hit rate: 0.009417
_2 memory faults: 0

|2 bandwidth limited stalls: 21156

Bandwidth

Bandwidth numbers for 1000MHz clock:
register to L1 bandwidth: 19627087872
L1 to L2 bandwidth: 7009841664
L2 to memory bandwidth: 6944216064

* L2 to memory is capped at 32GB/s
— LOAD will stall if BW exceeded

Local vs. Global

Keep in mind the only cached memory ops
are the global ones

— LOAD, STORE
— Only these instructions can affect bandwidth

Scratchpad memory is separate
- SW, LW, SWI, LWI, etc...

These always return in 1 cycle and are in a
separate memory space (not cached)

If the scratchpad overflows, crash

Size and Speed

Core size: 0.4367
L2 size: 0.0000
2-L.2 size: 0.0000
20-core chip size: 8.7332
FPS Statistics:
Total clock cycles: 906958
FPS assuming 1000MHz clock: 1102.5869

Size and Speed

« L2-size is deprecated (ignore)

* Core size is TM size (FUs and registers)

» Cache sizes come from a separate table,
generated by Caciti

“Total clock cycles” is the longest running
thread out of all cores

Analysis

* Primary goal:

— Find something interesting about the machine
running your code based on the simulations

— Definition of “interesting” will depend on the project

— Provide insight in to behavior, suggest potential
changes to the system

Analysis

— Where is your program spending time?
* (profile the biggest 3-5 phases of your code)
— What is causing stalls?
* Do you need more of a particular FU?
« Do you need bigger caches, more banks?
* |s your code inefficient? (avoidable divides, eftc...)

« Maybe it doesn’t need anything (a successful issue rate
of 75% is extremely good, 40% is pretty bad)

— Does your project have specific HW needs that
plain path tracing does not?

— What, if anything, might you change about the
architecture?

— How is/isn’t the architecture suited to your code in
general?

Analysis

Turn in a small (1-3 pages or so) pdf with
your analysis

Graphs/charts will help

Make sure to run on a large enough problem
(at least 128x128) to avoid the machine being
too big for the work

Start with the 32x20x4 thread machine, using
default.config

Analysis

 We ran 1000’s of simulations to come up with
the configuration we have

* Obviously we don’t expect that level of
analysis

— Just as long as you show you’'re thinking about it
and have an idea of why it performs as it does

