
CS6965 Fall 11

Understanding simhwrt
Output

Nevember 22, 2011

Simulator Updates
•  You may or may not want to grab the

latest update…

•  If you have changed the simulator code
for your project, it might conflict

•  Updates include small improvements to
the way output is printed
– And texture support, which most don’t need

Performance Analysis
•  Part of your final project will be analyzing HW/

SW performance

•  This will include:
–  Where is your program spending time?
–  What is causing stalls?
–  What HW changes (if any) might help?
–  Just find something “interesting”

•  Document describing your findings/analysis

Performance Analysis
•  We will send out an “assignment” pdf with

more details of the analysis we want

•  Step 1: Make sure your code runs in simhwrt
(as you develop)
–  If not, we will help you fix it

•  Step 2: Gather and interpret data

simhwrt output
•  When running with a full chip, simhwrt spits

out a ton of numbers

•  You will want to redirect stdout to a file
./simhwrt …. > output.txt!

•  Most of the output is formatted to be inserted
in to a spreadsheet
–  Keeping it as a text file may be sufficient though

simhwrt output
•  All example output in these slides was

generated with the following chip:
 --num-thread-procs 4 --num-cores
10 --num-l2s 2!

•  I’m using a smaller chip mostly so that
numbers will fit on slides

•  You will want to use the full chip, or
something like it

Header Info
•  The first part of the output is all data

describing the simulation/scene
–  You can pretty much ignore this

•  Useful data starts here:
<=== Core 0 ===>

Thread Status, CPI
<=== Core 0 ===>
---- Thread 00 ----

 PC 5: Stalled ----- 696358 in-flight CPI 1.2999 -- Total Cycles 906000
---- Thread 01 ----

 PC 5: Stalled ----- 693510 in-flight CPI 1.3053 -- Total Cycles 906000
---- Thread 02 ----

 PC 5: Stalled ----- 694825 in-flight CPI 1.3028 -- Total Cycles 906000
---- Thread 03 ----

 PC 5: Stalled ----- 691985 in-flight CPI 1.3081 -- Total Cycles 906000

 Total CPI 0.3260 , IPC 3.0675 -- Total Cycles 906000

Thread Status, CPI
•  Current status of the thread

“PC 5: Stalled”
–  Program counter 5 = HALT instruction

•  Total instructions issued
“696358 in-flight”

•  Cycles per instruction (per thread)
“CPI 1.2999”

•  Total CPI / IPC is TM-wide
•  Total cycles

“Total Cycles 906000”

Total Cycles
•  Keep in mind, all threads’ clocks cycle

simultaneously

•  All threads in the TM have to run as long as
the longest running thread

Profile Data
kernel thread(called, cycles)

 0 1 2 3
0 205, 615 204, 612 201, 603 205, 615
1 205, 15580 204, 15506 201, 15283 205, 15593
2 205, 398303 204, 402263 201, 406379 205, 398070

•  My code has 3 profile kernels
–  0: computing i, j pixel coordinates from atomicinc
–  1: generating camera ray
–  2: complete call to shading

•  Use the profile(int) intrinsic

Profile Parallelism
•  For a sufficiently large amount of work, any

given thread’s profile numbers will be close to
average
 205, 398303 204, 402263 201, 406379 205, 398070

•  On average the machine spent ~400K cycles
on shading

•  This program took 906958 total parallel clock
cycles
–  Shading is about 44% of the work
–  Don’t necessarily need to look at every core

Data Dependence Stalls
Data dependence stalls (caused by):
 FPADD 11205 (2.462 %)
 FPMUL 39165 (8.605 %)
 LOAD 12 (0.003 %)
 FPINVSQRT 62168 (13.659 %)
 FPDIV 325411 (71.497 %)
 DIV 15542 (3.415 %)
 FPRSUB 1636 (0.359 %)

•  Stalls are counted per-thread (“thread-cycles”)

Data Dependence Stalls
FPADD 11205 (2.462 %)

•  Total cycles that instruction’s input data was
not ready
–  (and percentage of data dependence cycles)

•  Could be due to waiting on the result of a
slow instruction (divide, etc)

•  Could be waiting on a cache-missed load

Resource Contention
Number of thread-cycles contention found when issuing:
 FPMUL 418 (0.196 %)
 FPMIN 44927 (21.109 %)
 LOAD 27476 (12.910 %)
 FPINVSQRT 12 (0.006 %)
 STORE 2172 (1.021 %)
 ADDI 3619 (1.700 %)
 ANDI 22 (0.010 %)

•  “thread-cycles” means it counts all stalls, even if they
happened in parallel
–  This number can be greater than total clock cycles

Resource Contention
FPDIV 131 (0.062 %)
•  Total thread-cycles that instruction was

unable to issue because the unit was already
in use

•  Only have 1 shared divide unit, if more than 1
tries to issue on same cycle, stall

•  Also caused by cache bank conflicts

Resource Contention
•  This number also includes write hazards

–  “pipeline hazards”

•  The register file only has 1 write port

•  If a slow instruction finishes at the same time
as a fast one issued later

–  Can only write 1 register at a time

•  This is typically a small percent of FU stalls

Instruction Count
Dynamic Instruction Mix: (2948634 total)
 ADD 64744 (2.196 %)
 MUL 822 (0.028 %)
 BITOR 59768 (2.027 %)
 FPADD 64633 (2.192 %)
 FPMUL 297742 (10.098 %)
 FPMIN 112330 (3.810 %)
…
•  Also counted per-thread

–  More instructions than total cycles

Issue Breakdown
 --Average #threads Issuing each cycle: 3.0691
 --Total thread-cycles: 3624156
 --total thread-cycles issued: 2780726 (76.727547%)
 --iCache conflicts: 719 (0.019839%)
 --thread*cycles of FU dependence: 213057 (5.878803%)
 --thread*cycles of data dependence: 455533 (12.569354%)
 --thread*cycles halted: 4395 (0.121270%)
Issue breakdown:
 --thread*cycles of issue worked: 2780726 (76.727547%)
 --thread*cycles of issue failed: 673704 (18.589266%)
 --thread*cycles of issue NOP/other: 169726 (4.683187%)

Work Allocation
ATOMIC_INC called by threads:

 0: 203
 1: 204
 2: 207
 3: 208

•  Ideally the difference between the highest
and lowest is a small percent

•  Otherwise you have a lot of idle threads
–  i.e. not enough work for the machine to do

Module Utilization
 ## Core 0 ##
Module Utilization

 FP AddSub: 3.72
 FP MinMax: 0.77
 FP Compare: 0.51
 Int AddSub: 2.26
 FP Mul: 4.11
 Int Mul: 0.14
 FP InvSqrt: 0.77
 FP Div: 2.20
 Conversion Unit: 0.01

•  Percentage of total issue capacity used

Module Utilization
•  If these numbers are high (100%), you will

likely reduce stalls by adding more units
–  At the cost of more area
–  More FU downtime

•  You may want to minimize OR maximize this
number

•  For good performance per area, utilization is
around 50%

L1 Cache Performance
L1 accesses: 4450236
L1 hits: 4400564
L1 misses: 49672
L1 bank conflicts: 58095
L1 stores: 49152
L1 near hit: 0 (ignore this)
L1 hit rate: 0.988838

•  These are averages for each TM
•  Only reported chip-wide

L2 Cache Performance
 -= L2 #0 =-
L2 accesses: 24848
L2 hits: 234
L2 misses: 24614
L2 stores: 24588
L2 bank conflicts: 190
L2 hit rate: 0.009417
L2 memory faults: 0
L2 bandwidth limited stalls: 21156

Bandwidth
Bandwidth numbers for 1000MHz clock:
 register to L1 bandwidth: 19627087872
 L1 to L2 bandwidth: 7009841664
 L2 to memory bandwidth: 6944216064

•  L2 to memory is capped at 32GB/s
–  LOAD will stall if BW exceeded

Local vs. Global
•  Keep in mind the only cached memory ops

are the global ones
–  LOAD, STORE
–  Only these instructions can affect bandwidth

•  Scratchpad memory is separate
–  SW, LW, SWI, LWI, etc…

•  These always return in 1 cycle and are in a
separate memory space (not cached)

•  If the scratchpad overflows, crash

Size and Speed
Core size: 0.4367
L2 size: 0.0000
2-L2 size: 0.0000
20-core chip size: 8.7332
FPS Statistics:
Total clock cycles: 906958
 FPS assuming 1000MHz clock: 1102.5869

Size and Speed
•  L2-size is deprecated (ignore)

•  Core size is TM size (FUs and registers)

•  Cache sizes come from a separate table,
generated by Cacti

 “Total clock cycles” is the longest running
thread out of all cores

Analysis
•  Primary goal:

–  Find something interesting about the machine
running your code based on the simulations

–  Definition of “interesting” will depend on the project

–  Provide insight in to behavior, suggest potential
changes to the system

Analysis
–  Where is your program spending time?

•  (profile the biggest 3-5 phases of your code)

–  What is causing stalls?
•  Do you need more of a particular FU?
•  Do you need bigger caches, more banks?
•  Is your code inefficient? (avoidable divides, etc...)
•  Maybe it doesn’t need anything (a successful issue rate

of 75% is extremely good, 40% is pretty bad)

–  Does your project have specific HW needs that
plain path tracing does not?

–  What, if anything, might you change about the
architecture?

–  How is/isn’t the architecture suited to your code in
general?

Analysis
•  Turn in a small (1-3 pages or so) pdf with

your analysis

•  Graphs/charts will help

•  Make sure to run on a large enough problem
(at least 128x128) to avoid the machine being
too big for the work

•  Start with the 32x20x4 thread machine, using
default.config

Analysis
•  We ran 1000’s of simulations to come up with

the configuration we have

•  Obviously we don’t expect that level of
analysis
–  Just as long as you show you’re thinking about it

and have an idea of why it performs as it does

