TRaX memory clarifications

Loading materials

Triangle IDs

Performance investigation




Reminder

* Always ‘svn up’ and make the sim
directory before starting an assignment

* | recently fixed a bug involving triangle

IDs




Materials

» Materials are 25 words each, starting at
int start matls = loadi(0, 9)

* Triangles have an ID to their material
— int shader id loadi(tri addr + 10)

— assuming you have found “tri_addr” of the hit
triangle

 int shader _addr = start_matls + (shader _id * 25)




Materials

 The diffuse color of each material is
what we care about for now

e Diffuse color is stored in the material at
offset 4(r), 5(g), 6(b)

* Color matl (loadf(shader addr, 4),
loadf (shader addr, 5),

loadf (shader addr, 6));




Triangle IDs

 In order to shade a triangle, we need to
keep track of which one was hit

* |In the HitRecord, save either:
— triangle address
— triangle ID (saved with tri in global mem)




Triangle IDs

* triangle address

— My triangle constructor takes the global
memory address of the triangle, so that the
HitRecord can save it later

 triangle ID

— Alternatively, you can load the triangle’s ID
from memory
* |ID = loadi(tri_addr, 9);
* Then recompute address from ID for shading




Program 1 Performance

450
400
350
300
250
200 B FPS (prog1)
150
100
) I
0
0 w
> X
c =
% w
o




How could Erik possibly beat

me?
* | did some investigating...

* Program 1 consists almost entirely of
sphere intersection tests
— profile the sphere::intersect code




Sphere performance

bool Sphere::intersects(const Rayé
ray)

{
profile(0);

. // sphere intersect code
profile(0);

return;

}




Sphere profile

Numer of kernel
calls

Total cycles spent 648200 1364732

46099 46099




Performance breakdown

« But our sphere code is essentially
identical, something else going on?

* To be sure, | copied Erik’s sphere code
to my ray tracer — no difference

 Total instructions issued:
— Erik’s: 1746803
— Danny’s: 2761856




Performance breakdown

9
[}
>
7]

k]
Pl
7}

o
£
=

p=4

branches
fple, fplt

stack (swi, Iwi)




Performance breakdown

* The stack operations indicate that
something of mine doesn’t want to live
In registers

 Most of the work is done in the vector
class




Vector.h

* Erik’s
—float x, vy, 2z

* Mine
—float data[3]

« Same with Color.h
e float r, g, b // Erik’'s
« float data[3] // mine




Performance breakdown

Notice the
difference In
addi, comes
from array offset
computation




Vector.h

 After using float x, y, z, my performance
was within ~1% of Erik’s




