
TRaX memory clarifications

Loading materials

Triangle IDs

Performance investigation

Reminder
•  Always ‘svn up’ and make the sim

directory before starting an assignment

•  I recently fixed a bug involving triangle
IDs

Materials
•  Materials are 25 words each, starting at
int start_matls = loadi(0, 9)!

•  Triangles have an ID to their material
–  int shader_id = loadi(tri_addr + 10)!
–  assuming you have found “tri_addr” of the hit

triangle

•  int shader_addr = start_matls + (shader_id * 25)

Materials
•  The diffuse color of each material is

what we care about for now

•  Diffuse color is stored in the material at
offset 4(r), 5(g), 6(b)

•  Color matl (loadf(shader_addr, 4), !
! loadf(shader_addr, 5), !

! ! loadf(shader_addr, 6));!

Triangle IDs
•  In order to shade a triangle, we need to

keep track of which one was hit

•  In the HitRecord, save either:
–  triangle address
–  triangle ID (saved with tri in global mem)

Triangle IDs
•  triangle address

– My triangle constructor takes the global
memory address of the triangle, so that the
HitRecord can save it later

•  triangle ID
– Alternatively, you can load the triangle’s ID

from memory
•  ID = loadi(tri_addr, 9);
•  Then recompute address from ID for shading

Program 1 Performance

How could Erik possibly beat
me?

•  I did some investigating…

•  Program 1 consists almost entirely of
sphere intersection tests
– profile the sphere::intersect code

Sphere performance
bool Sphere::intersects(const Ray&
ray)!

{!
 profile(0);!

!... // sphere intersect code!

!profile(0);!
!return;!
}!

Sphere profile

Erik’s Danny’s
Numer of kernel

calls 46099 46099

Total cycles spent 648200 1364732

Performance breakdown
•  But our sphere code is essentially

identical, something else going on?

•  To be sure, I copied Erik’s sphere code
to my ray tracer – no difference

•  Total instructions issued:
– Erik’s: 1746803
– Danny’s: 2761856

Performance breakdown

Performance breakdown
•  The stack operations indicate that

something of mine doesn’t want to live
in registers

•  Most of the work is done in the vector
class

Vector.h
•  Erik’s

– float x, y, z!

•  Mine
– float data[3]!

•  Same with Color.h
•  float r, g, b // Erik’s!
•  float data[3] // mine!

Performance breakdown
Notice the
difference in
addi, comes
from array offset
computation

Vector.h
•  After using float x, y, z, my performance

was within ~1% of Erik’s

