TRaX: A Multicore Hardware Architecture for
Real-Time Ray Tracing

Josef SpjutStudent Member, IEEEAndrew Kensler, Daniel KopteStudent Member, IEEE,
and Erik BrunvandMember, IEEE

Abstract—TRaX (Threaded Ray eXecution) is a highly parallel
multi-threaded, multicore processor architecture desiged for Q.
real-time ray tracing. The TRaX architecture consists of a st eye
of thread processors that include commonly used functional
units for each thread and that share larger functional units
through a programmable interconnect. The memory system taks
advantage of the application’s read-only access to the scen
database and write-only access to the frame buffer output to
provide efficient data delivery with a relatively simple menory
system. One specific motivation behind TRaX is to accelerate

single-ray performance instead of relying on ray-packetsn SIMD _
mode to boost throughput, which can fail as packets become
In this paper we describe the TRaX architecture and our

incoherent with respect to the objects in the scene database

performance results compared to other architectures usedof z-buffer
ray tracing. Simulated results indicate that a multicore veasion
of the TRaX architecture running at a modest speed of 500 MHz

provides real-time ray traced images for scenes of a compléy Fig. 1. The z-buffer algorithm projects a triangle toward tiine pixel screen
found in video games. We also measure performance as secomgla and updates all pixels with the distance to the eye (the “ilie)aand the
rays become less coherent and find that TRaX exhibits only mior triangle’s color unless a smaller distance is already @miin the z-buffer.
slowdown in this case while packet-based ray tracers show me

significant slowdown.

Index Terms—Ray tracing, multicore architectures, computer However, the basic principle of z-buffer rasterizationatth
graphics triangles are independent, becomes a bottleneck for highly

realistic images. This assumption limits shading openatio
to per-triangle or per-pixel computations and does not al-
low for directly computing global effects such as shadows,
T present almost every personal computer has a dedicagethsparency, reflections, refractions, or indirect ilination.
processor that enables interactive 3D graphics. TheRécks are known to approximate each of these effects indi-
graphics processing units (GPUs) implement theufferal- vidually, but combining them is a daunting problem for the
gorithm introduced in Catmull’s landmark University of bita z-buffer algorithm.
dissertation [1]. In this algorithm the inner loop iteratager Modern GPUs can interactively display several million
all triangles in the scene and projects those triangles o tiangles in complex 3D environments with image-basedkdoo
screen. It computes the distance to the screen (the z-value)p) texture and lighting. The wide availability of GPUs has
each pixel covered by the projected triangle and stores theVolutionized how work is done in many disciplines, and has
distance in the z-buffer. Each pixel is updated to the colpeen a boon to the hugely successful video game industry.
of the triangle (perhaps through a texture lookup or throughthile the hardware implementation of the z-buffer algarith
a procedural texturing technique) unless a smaller distanfas allowed excellent interactivity at a low cost, there are
and thus a triangle nearer to the screen, has already begnleast) three classes of applications that have not iedefi
written to the z-buffer (see Figure 1). A huge benefit of thisignificantly from this revolution
approach is that all triangles can be processed indepépdent, those that have datasets much larger than a few million
with no knowledge of other objects in the scene. Current yiangles such as vehicle design, landscape design, man-
mainstream graphics processors use highly efficient Zbuff tacturing, and some branches of scientific visualization;
rasterization hardware to achieve impressive performamce | inose that have non-polygonal data not easily converted
terms of triangles processed per second. This hardwarg-gene jnio triangles;
ally consists of deep non-branching pipelines of vectottii@a , those that demand high quality shadows, reflection, re-
point operations as the triangles are streamed throughfte G fraction, and indirect illumination effects such as archi-
and specialized memory systems to support texture 100kKups. tectyral lighting design, rendering of outdoor scenes, and

J. Spjut, A. Kensler, D. Kopta, and E. Brunvand are with thé@d®t of vehicle |Ight|ng deSIQ.n' .))
Computing, University of Utah, Salt Lake City, UT, 84112 These classes of applications typically use Whitted'’s ray

I. INTRODUCTION

tracing algorithm [2], [3], [4]. The ray tracing algorithra bet-
ter suited to huge datasets than the z-buffer algorithmuseca
its natural use of hierarchical scene structuring techesqu
allows image rendering time that is sub-linear in the numb
of objects. While z-buffers can use some hierarchical glli
techniques, the basic algorithm is linear with respect ® tl
number of objects in the scene. It is ray tracing’s largeetirr
constant and lack of a commodity hardware implementatic
that makes the z-buffer a faster choice for data sets tt
are not huge. Ray tracing is better suited for creating she T4
ows, reflections, refractions, and indirect illuminaticifeets
because it can directly simulate the physics of light basi .
on the light transport equation [5], [6]. By directly anc ray tracing \
accurately computing composite global visual effects gisaty
optics ray tracing can create graphics that are problerfatic Fig. 2. The ray tracing algorithm sends a 3D half-line (a “yagto the set
the z-buffer algorithm. Ray tracing also allows flexibility of objects and finds the closest one. In this case the triagle returned.
the intersection computation for the primitive objects,ietth
allows non-polygonal primitives such as splines or curves
to be represented directly. Unfortunately, computing ¢he§dy tracing by supporting multiple thread contexts (thread
visual effects based on simulating light rays is computetily ~Processors) in each core. We use a form of dynamic data-
expensive’ especia”y on a genera| purpose CPU. The J@N Style instruction issue to discover para||e|ism betwee
tracing algorithm currently requires many high-performean threads, and share large, less frequently used functiomits u
CPUs to be interactive at full-screen resolution. between thread processors. We explore trade-offs beteen t
While the ray tracing algorithm is not particularly parhe number of thread processors versus the number of functional
the instruction level, it is extremely (embarrassingly)gel at Units per core. The memory access style in ray tracing means
the thread level. Ray tracing’s inner loop considers eaghlpi that a relatively simple memory system can keep the multiple
on the screen. At each pixel a 3d half-line (a “ray”) is serffireads supplied with data. However, adding detailed image
into the set of objects and returns information about theest based (look-up) textures to a scene can dramatically iserea
object hit by that ray. The pixel is colored (again, perhagge required memory bandwidth (as it does in a GPU). We
using texture lookups or a procedurally computed textur@jsO explore procedural (computed) textures as an alteenat
according to this Object’s properties (Figure 2) This Hnmry, that trades Computation for memory bandwidth. The re@]ltin
also known as “ray casting” can be repeated recursively RHltiple-thread core can be repeated on a multicore chip
determine shadows, reflections, refractions, and othecaipt because of the independent nature of the computation thread
effects. In the extreme, every ray cast in the algorithm caMe evaluate performance of our architecture using two dif-
be computed independently. What is required is that evef§rent ray tracing applications: a recursive Whittedetydy
ray have read-only access to the scene database, and whg&er [2], [3], [4] that allows us to compare directly to eth
only access to a pixel in the frame buffer. Importantly, #te hardware ray tracing architectures, and a path tracer 8], [
never have to communicate with other threads (except that allows us to explore how the TRaX architecture responds
partiton work among the threads, which is done using 4f incoherent secondary rays, arguably the most important
atomic increment instruction in our implementation). Tiyige types of rays when considering a ray tracer [9].
of memory utilization means that a relatively simple memory This work does not analyze TRaX’s ability to handle dy-
system can keep the multiple threads supplied with data. namically changing scenes. We assume that the necessary dat
To summarize, the parallelization of rasterizing happeg¥§uctures are updated on the host machine as needed, so the
by processing triangles in parallel through multiple tgn performance we measure is for rendering a single frame. We
processing pipelines that can operate concurrently. Raynig '€, however, currently exploring the possibility of dynem
processes pixels/rays in parallel. Each pixel correspdndsScene updating on the TRaX architecture.
a primary ray (or set of primary rays in an oversampled
implementation) from the eye into the scene. These primary Il. BACKGROUND
rays may spawn additional secondary rays but all those rayBecause most applications are using larger and larger mod-
can continue to be processed concurrently with every othels (Greenberg has argued that typical model sizes areidgubl
ray. annually [10]), and because most applications are demgndin
This paper is an extended version of a previous confererinereasingly more visual realism, we believe the trendsifav
paper [7] in which we propose a custom processor architectuay tracing (either alone or in combination with rasteliaat
for ray tracing called TRaX (Threaded Ray eXecution). Thi®r some portions of the rendering process). Following the
paper adds to that paper additional details of the memaeyample of graphics processing units (GPUs), we also leeliev
system, and significant results related to TRaX'’s ability tthat a special purpose architecture can be made capable of
handle non-coherent secondary rays. interactive ray tracing for large geometric models. Suacsd
The TRaX processor exploits the thread rich nature plirpose hardware has the potential to make interactive ray

tracing ubiquitous. Ray tracing can, of course, be impleteetn the graphics pipeline. Current high-end GPGPUs such as the
on general purpose CPUs, and on specially programm@80 architecture from nVidia, for example [20], supporttbot

GPUs. Both approaches have been studied, along with a faesbitrary memory accesses and branching in the instruction
previous studies of custom architectures. set, and can thus, in theory, do both pointer chasing and
frequent branching. However, a G80-type GPGPU assumes
that every set of 32 threads (a “warp”) essentially exectltes

same instruction, and that they can thus be executed in SIMD

Graphics processing is an example of a type of computatign,,er Branching is realized by (transparently) masking o
that can be streamlined in a special purpose architeCtyfgaads Thus, if branching often leads to diverging thsead
and achieve much higher processing rates than on a genggal, o,y ytilization and performance will occur (similargar
purpose processor. This is the insight that enabled the GRLL .« apply to pointer chasing). Results for parts of the ray
revolution in the 1980's [11], [12], [13], [14]. A carefully ya:ing aigorithm on a G80 have been reported [19], and a
crafted computational pipeline for transforming triargnd ;o 5jete ray tracer has been demonstrated by nVidia using a

doing depth checks along with an equa"y carefully Crafteéjollection of four of their highest performance graphicedsa
memory system to feed those pipelines makes the recgiit jittle has been published about the demo [21].
generation of z-buffer GPUs possible [15], [16]. Curreni (3P

have up to hundreds of floating point units on a single GPU
and aggregate memory bandwidth of 20-80 Gbytes per secdhdGeneral CPU Architectures

from their local memories. That impressive local memory General purpose architectures are also evolving to be per-
bandwidth is largely to support framebuffer access and #Ma¢,3ns more compatible with ray tracing type applications.
based (look-up) textures for the primitives. These combingmost all commodity processors are now multicore and
to achieve graphics performance that is orders of magnitugdlg| ge SIMD extensions in the instruction set. By levenag
higher than could be achieved by running the same algorithiggse extensions and structuring the ray tracer to tracerenh

on a general purpose processor. packets of rays, researchers have demonstrated good frame
The processing power of a GPU depends, to a large degrgges even on single CPU cores [22], [23]. The biggest
on the independence of each triangle being processed in Yierence in our approach is that we don't depend on the
z—_buffer algorithm. This is what rr_1akes it possible to Strea'&bherence of the ray packet to extract thread-level péisatie
triangles through the GPU at rapid rates, and what makesr{,s our hardware should perform well even for diverging
difficult to map ray tracmg to a traditional GPU. There ar8econdary rays used in advanced shading effects for which

thre_e fundamental operations that must be supported for &buping the individual rays into coherent packets may ot b

tracing. easy.

Traversal: traversing the acceleration structure, a spatial in- |n addition to general multicore chips, direct support for
dex that encapsulates the scene objects to identify a geiltithreading is becoming much more common and appears
of objects that the ray is likely to intersect with. even in some commercially released processors such as the

Intersection: intersecting the ray with the primitive objectsintel Netburst architecture [24], the IBM Power5 architec-
contained in the element of the bounding structure th@fre [25], and the Sun Niagara [26]. The biggest limitingtéac
is hit. for these general architectures is that the individual @seors

Shading: computing the illumination and color of the pixelare heavily under-utilized while performing ray tracinchid
based on the intersection with the primitive object and the due largely to the relatively small number of floating fioin
collective contributions from the secondary ray segmentgsources on a CPU and the highly branch-dependent behavior
This can also involve texture lookups or procedurdf ray tracing threads. We believe that a larger number of
texture generation. simpler cores will perform better than fewer more complex

The traversal and intersection operations require bragchicores of a general CPU due to providing a more targeted set
pointer chasing, and decision making in each thread, aaficomputation resources for the application.

global access to the scene database: operations that are réThe IBM Cell processor [27], [28] is an example of an ar-

atively inefficient in a traditional z-buffer-based ar@uture. chitecture that might be quite interesting for ray tracvfth a

While it is possible to perform ray tracing on GPUs [17]64-bit in-order power processor element (PPE) core (based o

[18], [19], until recently these implementations have ne¢ib the IBM Power architecture) and eight synergistic processi

faster than the best CPU implementations, and they requélements (SPE), the Cell architecture sits somewhere betwe

the entire model to be in graphics card memory. While sonaegeneral CPU and a GPU-style chip. Each SPE contains a

research continues on improving such systems, the traditio128x 128 register file, 256kb of local memory (not a cache),

GPU architecture makes it unlikely that the approach can bad four floating point units operating in SIMD. When clocked

used on large geometric models. In particular the ineffyenat 3.2 GHz the Cell has a peak processing rate of 200GFlops.

of branching based on computations performed on the GPResearchers have shown that with careful programming, and

and the restricted memory model are serious issues for maigh using only shadow rays (no reflections or refractioms) f

tracing on a traditional GPU. secondary rays, a ray tracer running on a Cell can run 4 to

The trend, however, in general-purpose GPU (GPGPB)times faster than a single-core x86 CPU [29]. In order to
architecture is towards more and more programmability gkt those speedups the ray tracer required careful mapping

A. Graphics Processing Units

Fig. 3. Test scenes rendered on our TRaX architectural atmulFrom left to right: Cornell (rendered with our Whittetyle ray tracer), Sponza (rendered
with our Whitted-style ray tracer), Sponza (rendered with W/hitted-style ray tracer with procedural textures), feoence (rendered with our path-tracer).
These are standard benchmarking scenes for ray tracing.

into the scratch memories of the SPEs and managementgocimmable, allowing the programmer to decide the apprtepria
the SIMD branching supported in the SPEs. We believe thatceleration structure and primitive encoding, and by lacce
our architecture can improve on those performance numbatig single ray performance rather than using 4-ray SIMD
while not relying on coherent packets of rays executing inackets. There is, of course, a cost in terms of performance
SIMD fashion, and while using considerably less programméeanr this flexibility, but if adequate frame rates can be acbie
effort because we don'’t rely on programmer-managed scrafthvill allow our architecture to be used in a wider variety of

memory. situations. There are many other applications that share th
thread-parallel nature of ray tracing.
C. Ray Tracing Hardware Most recently, there have been proposals for multicore

Other researchers have developed special-purpose hmdﬁX?tems_ based on simplified versions of existi_ng instractio
for ray tracing [30], [31]. The most complete of these arset architectures that may _b_e useful for ray tracing. Thpse a
the SaarCOR [32], [33] and Ray Processing Unit (RPU) [3 roaches are closest in spirit to our architecture and sepie

[35] architectures from Saarland University. SaarCOR is jork that is concurrent with ours so detailed comparisiaes a

custom hard-coded ray trace processor, and RPU has a Qe yet possible. Both of these projects involve multipka-si

tom kd-tree traversal unit with a programmable shader. Boi{ied in-order cores with small-way multithreading, anatf

are implemented and demonstrated on an FPGA. All higfXPlicitly evaluate ray tracing as workload. The Copersicu
performance ray tracers organize the scene being rende?BRroach [36] attempts to leverage existing general perpos
into an “acceleration structure” of some sort that permutst f cores in a multi-core .o_rganlzatlon rather. than developlng_a
traversal of the scene volume to quickly arrive at the piirait spec.|allzed core specifically fqr ray tracing. As a result, i
geometry. Common structures are kd-trees, bounding voluhfgu!res more hardwarg Fo achieve the same performance_, and
hierarchies (BVH), oct-trees and grids. The traversal @ thWill not exceed 100 million rays per second unless scaling
structure is done in hardware in the Saarland architectuf@s 115 COres at a 22nm process. A commerial approach,
and requires that a kd-tree be used. Only when a primitive!‘i@”""bee [37], is clearly intended for general purpose astmp

encountered is the programmable shader called to deternift@ and rasterizing graphlcs as vyell as ray tracing and me}kgs
the color at that primitive (and thus the color of the pixel). heavy use of SIMD in order to gain performance. Because it is

The programmable portion of the RPU is known as th@gtended as a more general purpose processor, Larrabee also

Shading Processor (SP) and is used to determine the shaéri‘r?&’des coheren_cy between Ieve_ls of its cach_es_, something
(color) of each pixel once the intersected triangle priveitis Wh.ICh TRaX avo.|ds becaus.e of its more spemallzed target.
determined. This portion consists of four 4-way vector soré NS coherency is accomplished using a ring network that
running in SIMD mode with 32 hardware threads supportéi?mmun'c"’_‘tes between local caches, which adds complexity
on each of the cores. Three caches are used for shader otﬁtéhe archiecture.
kd-tree data, and primitive (triangle) data. Cache coleés o
quite good for primary rays (initial rays from the eye to th&. Target applications
scene) and adequate for secondary rays (shadows, reflgctionThere are several applications such as movies, archigectur
etc.). With an appropriately described scene (using kestreand manufacturing that rely on image quality and need shad-
and triangle data encoded with unit-triangle transforore) ows and reflections. These applications already use baych ra
the RPU can achieve very impressive frame rates, especidtlycing but would benefit greatly from interactive ray tragi
when extrapolated to a potential CMOS ASIC implementa- Other applications are not currently close to being interac
tion [35]. tive on GPUs regardless of image quality because their numbe
Our design is intended to be more flexible than the RP&f primitive objectsN is very large. These include many sci-
by having all portions of the ray tracing algorithm be proentific simulations [38], the display of scanned data [38f a

terrain rendering [40]. While level-of-detail (LOD) tedlnes Instructions are issued in-order in each Thread Processor
can sometimes make display of geometrically simplified date reduce the complexity at the thread level. The execuson i
possible, such procedures typically require costly prepss- pipelined with the fetch and decode each taking one cycle. Th
ing and can create visual errors [41]. exeuction phase requires a variable number of cycles depend
Simulation and games demand interactivity and currentigg on the functional unit required, and the writeback tafes
use z-buffer hardware almost exclusively. However, thensp final cycle. Instructions issue in-order, but may completeas
a great deal of computational effort and programmer tinmgder. Thread processing stalls primarily if needed datzois
creating complicated procedures for simulating lightiffgets yet available in the register file (using a simple scorebpard
and reducindN by model simplification. In the end they haveor if the desired functional unit is not available, but catre
imagery of inferior quality to that generated by ray tracingingle-thread execution is guaranteed.
We believe those industries would use ray tracing if it were Because issue logic is external to the thread state (im-
fast enough. plemented at the core-level), there is very little compiexi
We have customized the hardware in our simulator 0 terms of dependence checking internal to each thread. A
perform well for ray tracing, which is our primary motivatio simple table maintains instructions and their dependsncie
While TRaX is programmable and could be used for othémstructions enter the table in FIFO fashion, in programeord
applications, we have not explored TRaX’s performance fors® that the oldest instruction is always the next available
more robust range of applications. There are certainlyrothgstruction. Issue logic checks only the status of this stde
multi-threaded applications that might perform very welinstruction. Single thread performance is heavily depande
However, one major restriction on other applications ragni on the programmer/compiler who must order instructions in-
on TRaX is the (intentional) lack of coherence between thelligently to hide functional unit latencies as often asgible.
caches on the chip which would hinder applications with
substantial communication between threads. B. A Collection of Threads in a Core
Each of the multiple cores on a chip consists of a set
of simple thread processors with shared L1 data cache and
shared functional units as shown in Figure 5. Each thread
Threads represent the smallest division of work in the ragrocessor logically maintains a private L1 instruction feac
traced scene, so the performance of the entire system depghngbre accurately, a small set of thread processors share a
on the ability of the architecture to flexibly and efficientlymulti-banked I-cache). However, all threads in a core shage
allocate functional resources to the executing threadsush, multi-banked L1 data cache of a modest size (2K lines of 16-
our architecture consists of a set of thread processors thgtes each, direct mapped, with four banks, see Section)VI-A
include some functional units in each processor and thaeshall cores on a multicore chip share an L2 unified instruction
other larger functional units between thread processors.afd data cache. Graphics processing is unique in that large
collection of these thread processors, their shared fomati blocks of memory are either read-only (e.g., scene data) or
units, issue logic, and shared L2 cache are collected intosgite-only (e.g., the frame buffer). To preserve the utilf
“core.” the cache, write-once data are written around the cache. For
A full chip consists of many cores, each containing manyur current ray tracing benchmarks no write data needs to be
thread processors, sharing an on-chip L2 cache and off-chéfad back, so all writes are implemented to write around the
memory and I/O bandwidth. Because of the parallel natuceche (directly to the frame buffer). Separate cached ane no
of ray-tracing, threads (and thus cores) have no need dached write assembly instructions are provided to give the
communicate with each other except to atomically divide th®ogrammer control over which kind of write should occur.
scene. Therefore, a full on-chip network is neither proglideThis significantly decrease thrashing in the cache by filteri
or needed. In order to support multi-chip configuration$; ofout the largest source of pollution. Hence, cache hit rates a
chip bandwidth is organized into lanes, which can be flexibhigh and threads spend fewer cycles waiting on return data
allocated between external memory and other 1/O needs. from the memory subsystem. In the future we plan to explore
using read-around and streaming techniques for certaiestyp
of data that are known to be touch-once. Currently the choice
of read-around or write-around versus normal cached memory
Each thread processor (TP) in a TRaX core can executeatscess is made by the programmer.
own thread code, where a software thread corresponds to a rajfach shared functional unit is independently pipelined to
Each thread maintains a private program counter, regiséer fcomplete execution in a given number of cycles, with the
and small instruction cache. The register file is a simple&dr ability to issue a new instruction each cycle. In this way,
1-write SRAM block. Because of the complexity involved ireach thread is potentially able to issue any instructionron a
forwarding data between functional units, all results ariét@n cycle. With the shared functional units, memory latencied a
back to the register file before they can be accessed by tiessible dependence issues, not all threads may be able to
consuming instruction. Figure 6 shows these functionasunissue on every cycle. The issue unit gives threads priooity t
as well as the register file. The type and number of theskim shared functional units in a round robin fashion.
functional units is variable in our simulator. More complex Each thread processor controls the execution of one ray-
functional units are shared by the TPs in a core. thread. Because the parallelism we intend to exploit is at th

IIl. TRAX ARCHITECTURE

A. A Thread Processor

Core (32-thread version)
| { IMim/lssue ! | /\ Thread Processor
. Control
Chip ™ Branch
1 . 1 (Icy)
L1 0 3 Convert
ooy | L 1Y P] store, liy
. L2 =% ["Load / Store / Atomic Inc_(2x}— Frame Int
L Cc1>re Store, 1 Buff - RF Add/Sub
™ Frame o (cy)
- Buff [Flexible Interconnect | Logical
(1cy)
: Atomic @x) FP
_: C%re Inc ™~ - Sharedl (4)' By Crp/Min/Max
unctiona it fing] cy) (cy)
hares 1 C
nc 275 (159 P —
Fig. 4. Multi-Core Chip Layout Fig. 5. Core Block Diagram Fi& Thread Processor State

thread level, and not at the instruction level inside a ttiyegper core and both the number banks and number of MSHRs are
many features commonly found in modern microprocessopgrameterized in our simulations. It should be noted that fo
such as out-of-order execution, complex multi-level brandhe work reported in this paper, the L2 cache was not modeled
predictors, and speculation, are eliminated from our arcl@xplicitly (See Section V for more details). Instead all seis
tecture. This allows available transistors, silicon aread in the L1 cache were treated as a fixed latency to memory
power to be devoted to parallelism. In general, complexsty intended to approximate the average L2 latency. The modeled
sacrificed for expanded parallel execution. This will secte latency to L2 was on the order of twenty times the latency
in offering high-performance ray tracing if we can keep géar of L1 hits. Ongoing simulations have added explicit models
number of threads issuing on each cycle. Our results shaw tfa the L2 cache and DRAM, but those numbers are not all
with 32 thread processors per core, close to 50% of the tereastaiable yet. We are finding that our original assumptioes ar
can issue on average in every cycle for a variety of differenbt too far off though.

scenes using an assembly-coded Whitted-style ray trager [7

and a path tracer coded in a C-like language [9]. IV. RAY TRACING APPLICATIONS

TRaX is specifically. designed to accelergte sin.gle-.ray PE™Some of our test programs are written directly in assembly
formance and to exploit thread-level parallelism usingtipld language. Others are written in a higher level language de-

thread prc:))’%essg‘rls a;g colrges. AIE/IZany 4gthe;6ray3t;acingl arcgtjned for our architecture. The TRaX programming language
tecture§ []’.[1, [29], [19], [42], [43], [36], [37] explt is a simple C-like language with some extensions inspired by
parallel!sm using SIMD to _execute_ some U“mber of the sargfe RenderMan shading language [44] to allow for ease of
instructions at the same time. This technique does not sc fiting a ray tracing application. The language is compiled

wgll if the rays in the SIMD bundle pecome less coheremto TRaX assembly for the simulator by our simple custom
with respect to the scene objects they intersect [9]. In¢haé compiler

what was a single SIMD instruction wil haye to be repeated To evaluate our architecture we have developed two differ-
for each of the threads as they branch to different portidns g ray tracing systems.

the scene and require different intersection tests andirrlijﬁaq{Y itted-Stvle Rav Ti - This impl N .
operations. Because our threads are independent we do (W ed-otyle Ray Iracer. 1his implements a recursive ray
tracer that provides various shading methods, shadows

have to mask off results of our functional unit operations. . e)
from a single point light source and BVH traversal. It is

written in thread processor assembly language.

C. Multi-Core Chip Path Tracer: This application is written in TRaX language
Our overall chip design (Figure 4) is a die consisting described previously. It computes global illumination in
of an L2 cache with an interface to off-chip memory and the scene using a single point light source and using

a number of repeated identical cores with multiple thread Monte-Carlo sampled Lambertian shading [4].
processors each. Due to the low communication requirement3he test scenes we are using, listed in Table | with some
of the threads, each core only needs access to the sdmasic performance numbers, exhibit some important prigzsert
read only memory and the ability to write to the fram&he Cornell Box is important because it represents the sistpl
buffer. The only common memory is provided by an atomitype of scene that would be rendered. It gives us an idea of the
increment instruction that provides a different value eitle maximum performance possible by our hardware. Sponza on
the instruction is executed the other hand has over 65000 triangles and uses a BVH with
The L2 cache is assumed to be banked similarly to the lover 50000 nodes. The Conference Room scene is an example
cache to allow parallel accesses from the L1 caches of thkea reasonably large and complex scene with around 300k
many cores on the chip. A number of MSHRs are providddangles. This is similar to a typical modern video gamensce

TABLE | . . .
SCENE DATA WITH RESULTS FOR1 AND 16 CORES, EACH WITH 32 The Ip term is the shade value at each point which uses

THREAD PROCESSORSAND PHONG SHADING ESTIMATED AT 500MHz constant terms for the ambieky, diffuse ky, and specular
ks components of the shading. The term is the Phong

Scene Triangles BVH Nodes FPS (1) FPS (16) exponent that controls the shininess of the object by adwist
conference 222224 525868;39 11-14129832 1272985828 the specular highlights. Thieterms are the intensities of the
sponza

comell 32 33 46258 74.012 ambient, diffuse, and specular components of the lightcssur

2) Procedural Texturing:We also implement procedural
textures, that is, textures which are computed based on the
geometry in the scene, rather than an image texture which

Even more complicated scenes including dynamic componepfssimply loaded from memory. Specifically, we use Perlin
will be included in testing as more progress is made. noise with turbulence [47], [48]. These textures are comgut
using pseudo-random mathematical computations to simulat
. natural materials which adds a great deal of visual realisth a
A. Whitted-Style Ray Tracer interest to a scene without the geed to store and load complex
This is a basic recursive ray tracer that provides us withtextures from memory. The process of generating noise is
baseline that is easily compared to other published redults quite computationally complex. First, the texture cooadén
addition to controlling the depth and type of secondary raysn the geometry where the ray hit is used to determine a
another parameter that can be varied to change its perf@enannit lattice cube that encloses the point. The vertices ef th
is the size of the tiles assigned to each thread to rendereat cnbe are hashed and used to look up eight pre-computed
time. Originally the screen would be split into 266 pixel pseudo-random vectors from a small table. For each of these
squares and each thread would be assigned one tile to rendectors, the dot product with the offset from the texture
While this is a good idea for load balancing among the thread®ordinate to the vector’s corresponding lattice poinbisnd.
we found that it did not produce the best performance. ldsted hen, the values of the dot products are blended using either
we changed the tiles to be single pixels and assigned thosdHrmite interpolation (for classic Perlin noise [47]) oruirgic
threads in order. This seemingly minor change was able itderpolant (for improved Perlin noise [49]) to produce the
increase the coherence of consecutive primary rays (guttifinal value. More complex pattern functions such as turtzden
them closer together in screen space), and make the cachetoduced through spectral synthesis sum multiple evalnati
rate much higher. The increased coherence causes consecofi Perlin noise for each point shaded. There are 672 floating
rays to hit much of the same scene data that has already bpeimt operations in our code to generate the texture at each
cached by recent previous rays, as opposed to each thrpael. We ran several simulations comparing the instrurctio
caching and working on a separate part of the scene. count of an image with and without noise textures. We found
Currently the pixels are computed row by row straigtihat there are on average 50% more instructions required to
across the image. As we advance the ray-tracer further, generate an image where every surface is given a procedural
will use a more sophisticated space filling method such agexture than an image with no textures.
Z curve. This method will trace rays in a pattern that causesPerlin noise increases visual richness at the expense of
concurrent rays to stay clustered closer together, whidkesia computational complexity, while not significantly affeugi
them more likely to hit the same nodes of the BVH, increasirgemory traffic. The advantage of this is that we can add
cache hit rate. more FUs at a much lower cost than adding a bigger cache or
1) Shading Methods:Our ray tracer implements two of more bandwidth. Conventional GPUs require an extremety fas
the most commonly used shading methods in ray tracingemory bus and a very large amount of RAM for storing tex-
simple diffuse scattering, and Phong lighting for specul&res [15], [16]. Some researchers believe that if noiseta
highlights [45], [46]. We also include simple hard shadowgrocedural textures were well supported and efficient, that
from a point light source. Shadow rays are generated and cagny applications, specifically video games, would choose
from each intersected primitive to determine if the hit liwa those textures over the memory-intensive image-baseairtext
is in shadow (so that it is illuminated only with an ambienthat are used today [50]. An example of a view of the Sponza
term) or lit (so that it is shaded with ambient, diffuse angcene rendered with our Perlin noise-based textures can be
Phong lighting). seen in Figure 3
Diffuse shading assumes that light scatters in every dinect
equally, and Phong Iighting a_dds spe_cular _highlights' tousimB_ Path Tracer Application
late shiny surfaces by increasing the intensity of the lifjtite
view ray reflects straight into a light source. These two sigd In order to explore the ability of our architecture to mainta
methods increase the complexity of the computation peﬂ'pixgerformance in the face of incoherent rays that don’t redpon
increasing the demand on our FUs. Phong highlights especia¥ell to packets, we built a path tracer designed so that we
increase complexity, as they involve taking an integer F,Q\,\,é;ould carefully control the coherence of the secondary.rays

as can be seen in the standard lighting model: Our path tracer is written in the TRaX language described
previously and is designed to eliminate as many variables
lp=kaia+ 3 (kg(L-N)ig+ks(R-V)%s as possible that could change coherence. We use a single

lights point light source, and limit incoherence to Monte-Carlo

sampled Lambertian shading with no reflective or refractifeom frame to frame. The results we show are therefore an
materials [4]. Every ray path is traced to the same depthiccurate representation of changing the scene memory on
there is no Russian Roulette or any other dynamic decisiemery frame and requiring invalidating the caches. Theligsu
making that could change the number of rays cast. This is alle conservative because even in a dynamic scene, much of
to ensure that we can reliably control secondary ray coleererthe scene might stay the same from frame to frame and
for these experiments. A more fully functional path tracéhw thus remain in the cache. Statistics provided by the siroulat
these additional techniques could be written using the TRadclude total cycles used to generate a scene, functioriall un
programming language, and we expect it would have similatilization, thread utilization, thread stall behavioremory
performance characteristics. and cache bandwidth, memory and cache usage patterns, and
Each sample of each pixel is controlled by a simple loopotal parallel speedup.
The loop runs D times, where D is the specified max depth. ForOur ray tracing code was executed on simulated TRaX cores
each level of depth we cast a ray into the scene to determhmeving between 1 and 256 thread processors, with issuesvidth
the geometry that was hit. From there, we cast a single shadofall function units except memory varying between 1 and 64
ray towards the point light source to determine if that poirftnemory was held constant at single-issue). Images may be
receives illumination. If so, this ray contributes lightsed on generated for any desired screen size. Our primary goahéor t
the material color of the geometry and the color of the lighturrent design phase is to determine the optimal allocation
As this continues, light is accumulated into the final pixedf transistors to thread-level resources, including fiomel
color for subsequent depth levels. The primary ray directiaunits and thread state, in a single core to maximize utibnat
is determined by the camera, based on which pixel we and overall parallel speedup. We are also looking carefully
gathering light for. Secondary (lower depth) rays are cashf at memory models and memory and cache usage to feed the
the previous hit point and are randomly sampled over a coesirparallel threads (and parallel cores at the chip level).
weighted hemisphere, which causes incoherence for higier r
depths. . .
Secondary rays are randomly distributed over the herr'%-' Functional Units
sphere according to a Bidirectional Reflectance Distrisuti For a simple ray casting application, large, complex in-
Function (BRDF) [51], [52]). To compute a cosine-weightegtruction sets such as those seen in modern x86 processors
Lambertian BRDF, a random sample is taken on the area o unnecessary. Our architecture implements a basic set
cone with the major axis of the cone parallel to the normal f functional units with a simple but powerful ISA. We
the hit geometry and the vertex at the hit point. As an arificiinclude bitwise instructions, branching, floating pointé&iger
benchmark, we limit the angle of this cone anywhere from @nversion, memory operations, floating point and integel; a
degrees (the sample is always taken in the exact directionsgbtract, multiply, reciprocal, and floating point companée
the normal) to 180 degrees (correct Lambertian shading o@lgo include reciprocal square root because that operation
full hemisphere). By controlling the angle of the cone we capecurs with some frequency in graphics code for normalizing
control the incoherence of the secondary rays. The wider t#ectors.
cone angles the less coherent the secondary rays become &sinctional units are added to the simulator in a modu-
they are sampled from a larger set of possible directione. Tiar fashion, allowing us to support arbitrary combinations
effect of this can be seen in Figure 7. and types of functional units and instructions. This allows
very general architectural exploration starting from oasib
thread-parallel execution model. We assume a conservative
500 MHz clock which was chosen based on the latencies of the
We have two TRaX simulators: a functional simulator thatinctional units that were synthesized using Synopsysdpesi
executes TRaX instructions by running them on the PC, a@bmpiler and DesignWare libraries [54] and well charaztdi
a cycle accurate simulator that simulates in detail the exaammercial CMOS cell libraries from Artisan [55]. Custom
cution of a single core with 32 threads and associated shadss$igned function units such as those used in commercial
functional units. The functional simulator executes muaiten GPUs would allow this clock rate to be increased.
quickly and is very useful for debugging applications and fo We first chose a set of functional units to include in our
generating images. machine-level language, shown in Table II. This mix was
The cycle-accurate simulator runs much more slowly thaosen by separating different instruction classes inparsete
the functional simulator and is used for all performancgedicated functional units. We implemented our ray casting
results. Given the unique nature of our architecture, it mas benchmarks using these available resources, then ran auser
reasonable to adapt available simulators to our needs.eln #imulations varying the number of threads and the width of
style of Simplescalar [53], our cycle-accurate simulatloves each functional unit. All execution units are assumed to be
for extensive customization and extension. Memory opanati pipelined including the memory unit.
go through the L1 cache and to the L2 with conservative Each thread receives its own private FP Add/Sub execution
latencies and variable banking strategies. unit. FP multiply is a crucial operation as cross and dot
For each simulation we render one frame in one core fropnoducts, both of which require multiple FP multiplies, are
scratch with cold caches. The instructions are assumedctmmmon in ray tracing applications. Other common operation
be already in the instruction cache since they don’t changech as blending also use FP multiplies. The FP multiplier is

V. DESIGN EXPLORATION

Fig. 7. The Cornell Box scene showing the visual change asdhepling angle increases in our path tracer. Starting oneftieO degrees, 30 degrees, 60

degrees, and 180 degrees on the right.

TABLE Il
DEFAULT FUNCTIONAL UNIT Mix (500MHz CYCLES)

Latency
Unit Name Number of units (cycles)
IntAddSub 1 / thread 1
IntMul 1/ 8 threads 2
FPAddSub 1/ thread 2
FPMul 1/ 8 threads 3
FPComp 1/ thread 1
FPInvSqrt 1/ 16 threads 15
Conversion 1/ thread 1
Branch 1/ thread 1
Cache 1 (mult. banks) varies

TABLE Il

AREA ESTIMATES (PRE-LAYOUT) FOR FUNCTIONAL UNITS

USING ARTISAN CMOSLIBRARIES AND SYNOPSYS THE

130NM LIBRARY IS A HIGH PERFORMANCE CELL LIBRARY

AND THE 65NM IS A LOW POWER CELL LIBRARY. SPEED IS
SIMILAR IN BOTH LIBRARIES.

Area (un?)
Resource Name 130nm 65nm
2kx 16byte cache 1,527,5719 804,063
(four banks / read ports)
128x32 RF 77,533 22,000(est.)
(1 Write 2 Read ports)
Integer Add/Sub 1,967 577
Integer Multiply 30,710 12,690
FP Add/Sub 14,385 2,596
FP Multiply 27,194 8,980
FP Compare 1,987 690
FP InvSqrt 135,040 44,465
Int to FP Conv 5,752 1,210

VI. RESULTS

Results are generated for a variety of thread processor
configurations and using both our Whitted-style ray tracer a
our path tracer.

A. Single Core Performance

Many millions of cycles of simulation were run to charac-
terize our proposed architecture for the ray-tracing @afitbn.

We used frames per second as our principle metric extraggblat
from single-core results to multi-core estimates. Thislea

tion is conservative in many respects since much of the scene
data required to render the scene would likely remain cached
between consecutive renderings in a true 30-fps envirohmen
However, it does not account for re-positioning of objects,
light sources, and viewpoints. The results shown here descr

a preliminary analysis based on simulation.

1) Area: We target 20tn? as a reasonable die size for a
high-performance graphics processor. We used a low power
65nm library to conservatively estimate the amount of perfo
mance achievable in a high density, highly utilized graphic
architecture. We also gathered data for high performance
130nm libraries as they provide a good comparison to the
Saarland RPU and achieve roughly the same clock frequency
as the low power 65nm libraries.

Basic functional units, including register files and cacghes
were synthesized, placed and routed using Synopsys and
Cadence tools to generate estimated sizes. These estianates
conservative, since hand-designed execution units viddlyi
be much smaller. We use these figures with simple extrapo-
lation to estimate the area required for a certain number of
cores per chip given replicated functional units and nexgss
memory blocks for thread state. Since our area estimates do

a shared unit because of its size, but due to its importanoet include an L2 cache or any off-chip 1/O logic, our estiegat
it is only shared among a few threads. The FP Inv functionil Table IV and Table V are limited to 187 in order to
unit handles divides and reciprocal square roots. The iityajorallow room for the components that are currently unaccalinte
of these instructions come from our box test algorithm, Wwhidor.

issues three total FP Inv instructions. This unit is vergéar

2) Performance: For a ray tracer to be considered to

and less frequently used hence, it is shared among a greatgtieve real-time performance, it must have a frame rate of
number of threads. We are also exploring the possibility efound 30 fps. The TRaX architecture is able to render the
including a custom noise function as a shared functional uibnference scene at 31.9 fps with 22 cores on a single chip at
that would allow the rapid generation of gradient noise usd@0nm. At 65nm with 79 cores on a single chip performance

for procedural texturing (see Section IV-A2).

jumps to 112.3 fps.

10

TABLE IV
COREAREA ESTIMATES TOACHIEVE 30 FPSON CONFERENCE Cornell ——
THESE ESTIMATES INCLUDE THE MULTIPLE CORES AS SEEN IN Sponza EzEEER

FIGURES4 AND 5, BUT DO NOT INCLUDE THE CHIP-WIDE L2 5 o Confereni_
CACHE, MEMORY MANAGEMENT, OR OTHER CHIPWIDE UNITS. —
4
Thrds CoreAreann? Core DieAreamn? o .
/Core 130 65 FPS Cores 130 65 -
nm nm nm_ nm o1
16 4.73 1.35 0.71 43 203 58
32 6.68 1.90 142 22 147 42

64 10.60 2.99 246 15 138 39
128 18.42 5.17 346 9 166 47

Cache Issue Width
TABLE V

PERFORMANCE COMPARISON FORCONFERENCE ANDSPONZA Fig. 8.
ASSUMING A FIXED CHIP AREA OF150mn?. THIS FIXED CHIP AREA varied.
DOES NOT INCLUDE THEL2 CACHE, MEMORY MANAGEMENT, AND 60 . . - T

OTHER CHIP-WIDE UNITS. IT IS ASSUMED THAT THOSE UNITS Cornell ——

Sponza EEEEs
WOULD INCREASE THE CHIP AREA BY A FIXED AMOUNT. 0 Conference

Single core performance as Cache Issue Width is

Threads # of Cores Conference Sponza 40
/Core 130 65 130 65 130 65
nm nm nm nm nm nm
16 32 111 227 793 17.7 617
32 22 79 319 1123 241 851 20 |
64 14 50 348 1236 240 854
128 8 29 282 1005 175 624

30

% Issued

10

32 64
The number of threads able to issue in any cycle is a Number of Threads
valuable measure of how well we are able to sustain paraILeI
. . 1g.
execution by feeding threads enough data from the memor;g/
hierarchy and offering ample issue availability for all extion

u.nits. Figure 9 shows, for a variable number of_threadg in a3) Cache Performancewe varied data cache size and issue
single core, the average percentage of threads issued in &g to determine an appropriate configuration offeringthi
cycle. For 32 threads and below, we issue nearly 50% of 3ll tormance balanced with reasonable area and complexity.
threads in every cycle on average. For 64 threads and abg¥g, scenes with high complexity a cache with at least 2K
we see that the issue rate drops slightly ending up below 44%.¢ (16 pytes each) satisfied the data needs of all 32dkrea
for the 128 threads rendering the Sponza scene, and be@’écuting in parallel with hit rates in the 95% range. We
30% for the Conference scene. attribute much of this performance to low cache pollution
Considering a 32 thread core with 50% of the threadfecause all stores go around the cache. Although perfonanc
issuing each cycle, we have 16 instructions issued per cygntinued to increase slightly with larger cache sizesgtttea
per core. In the 130nm process, we fit 16 to 22 cores ongfea required to implement the larger cache meant that total
chip. Even at the low end, the number of instructions issueflicon needed to achieve 30fps actually increased beyond a
each cycle can reach up to 256. With a die shrink to 65 nm W& 1 data cache size. To evaluate the number of read ports
can fit more than 64 cores on a chip allowing the number gteded, we simulated a large (64K) cache with between 1 and
instructions issued to increase to 1024 or more. Since wernes2 read ports. Three read ports provided sufficient paisitel

have to flush the pipeline due to incorrect branch predictiggr 32 threads. This is implemented as a four-bank direct
or speculation, we potentially achieve an average IPC oemahapped cache.

than 1024. Even recent GPUs with many concurrent threadsThe L2 cache was not modeled directly in these exper-

issue a theoretical maximum IPC of around 256 (128 threa@$ents. Instead a fixed latency of 20 cycles was used to
issuing 2 floating point operations per cycle). conservatively estimate the effect of the L2 cache. Ongoing
Another indicator of sustained performance is the averagenulations include detailed L2 and DRAM models where
utilization of the shared functional units. The FP Inv uniit appears that a 512kbyte L2 cache shows good hit rates.
shows utilization at 70% to 75% for the test scenes. Thdthough those simulations are not complete, initial irdic
FP Multiply unit has 50% utilization and Integer Multiplytions are that our estimate was, in fact, conservative. The
has utilization in the 25% range. While a detailed study ahgoing simulations are currently showing memory band-
power consumption was not performed in this work, we expewidths between L1 cache and the register file that range from
the power consumption of TRaX to be similar to that 010-100 GB/s depending on the size of the scene. The L2-
commercial GPUs. L1 bandwith ranges from 4-50 GB/s, and DRAM-L2 from

9. Thread Performance (% Issued)

11

TABLE VI
PERFORMANCE COMPARISON FOFCONFERENCE AGAINSTCELL AND [57]. However, secondary rays often lose the coherency that

RPU. COMPARISON IN FRAMES PER SECOND AND MILLIONRAYS PER makes packets effective and performance suffers on theemag
SECOND(MRPS). ALL NUMBERS ARE FOR SHADING WITH SHADOWS as awhole. Thus, an architecture that accelerates indilidy
TRAX AND RPUNUMBERS ARE FOR1024x 768IMAGES. CELL NUMBERS . . o
ARE FOR1024x 1024IMAGES AND SO THECELL Is BEST comparen PE€rformance without relying on packets could have a distinc
USING THE MRPS METRIC WHICH FACTORS OUT IMAGE SIZE advantage when many secondary rays are desired.
To study this effect we use our path tracer application,

which we have designed so that we can control the degree

TRaX IBM Cell[29] RPU[35] . - .
130nm . €5nm 1Cell . 2cels DRPU4 - Dpreus Of mcpherence m_the secondar.y rays (see Section IV-B).. We
fos 319 112.3 20.0 377 27.0 812 do this by controlling the sampling cone angle for the cosine
mrps 50.2 177 41.9 79.1 42.4 128 . .
process lsonm 65nm 9onm oonm Tsonm sonm Weighted Lambertian BRDF used to cast secondary rays.
area n?) ~200 ~200 ~220 ~440 ~200 ~190 We compare our path tracer to Manta, a well-studied packet
Clock 500MHz 500MHz 3.2GHz 3.2GHz 266MHz

400MHz hased ray/path tracer [57]. Manta uses packets for alldevel
secondary rays unlike some common ray tracers that only use
packets on primary rays. The packets in Manta shrink in size
250Mb/s to 6GB/s for reads. These clearly cover a broad rangg ray depth increases, since some of the rays in the packet
depending on the size and complexity of the scene, and we B&&ome uninteresting. We modified Manta’s path tracing mode
currently running additional simulations to better untnsl to sample secondary rays using the same cone angles as in our
the memory system. TRaX path tracer so that comparisons could be made.

The I-caches are modeled as 8kbyte direct mapped cachesjanta starts with a packet of 64 rays. At the primary level,
but because the code size of our current applications isl smakse rays will be fairly coherent as they come from a common
enough to fitin those caches, we assume they are fully warmgighin (the camera) and rays next to each other in pixel space
and that all instruction reference come from those cach@gve a similar direction. Manta intersects all of the rays in
The ongoing, more detailed simulations do not make thife packet with the scene bounding volume hierarchy (BVH)
assumption, but because of the current code size there g@éfhg the DynBVH algorithm [22]. It then repartitions the
few impacts of L1 I-cache on processing times. ray packet in memory based on which rays hit and which

4) Comparison:Comparing against the Saarland RPU [34}jo not. DynBVH relies on coherence with a frustum-based
[35], our frame rates are higher in the same technology, ajilersection algorithm and by using SSE instructions irugeo
our flexibility is enhanced by allowing all parts of the rayof four for ray-triangle intersection tests. If rays in thacget
tracing algorithm to be programmable instead of just th@main coherent then these packets will stay together grou
shading computations. This allows our application to use (fthe BVH traversal and take advantage of SSE instructions and
example) any acceleration structure and primitive enapdinfrystum-culling operations. However, as rays in the packet
and allows the hardware to be used for other applicatiorts thgcome incoherent they will very quickly break apart, and
share the thread-rich nature of ray tracing. almost every ray will be traversed independently.

A ray tracing application implemented on the cell processor 1o test how our path tracer performs relative to the level
[29] shows moderate performance as well as the limitatiogg coherence of secondary rays we ran many simulations
of an architecture not specifically designed for ray tracinghcrementally increasing the angle of our sampling cone and
In partl|cult_31r our hardware allows for many more threaq‘ﬁeasuring rays per second and speedup (slowdown) as the
executing in parallel and trades off strict limitations dret angle was increased and secondary rays become less coherent
memory hierarchy. The effect can be seen in the TRaXyy || of our tests, we used a ray depth of three (one primary
performance at 500MHz compared to Cell performance gfy and two secondary rays). We believe that three rays

3.2GHz. Table VI shows these comparisons. taken randomly on a hemisphere is sufficient for complete
incoherence and will allow secondary rays to bounce to any
B. Secondary Ray Performance part of the scene data. This will cause successive rays ® hav

We call the initial rays that are cast from the eye-point inta widely ranging origin and direction, and packets will b@eo
the scene to determine visibility “visibility rays” (sonmaes very incoherent.
these are called “primary rays”) and all other rays that are With a cone angle close to 0O degrees, secondary rays will be
recursively cast from that first intersection point “secaryd limited to bouncing close to the normal which will force rays
rays.” This is something of a misnomer, however, becausetdta limited area of the scene. In a packet based system using a
is these secondary rays, used to compute optical effeets, tharrow cone angle successive samples will have a much higher
differentiate ray traced images from images computed usipgobability of hitting the same BVH nodes as other samples
a z-buffer. The secondary rays are not less important then th the packet allowing for multiple rays to be traced at the
visibility rays. They are in fact the essential rays thatldea same time with SIMD instructions. Increasing the angle of
the highly realistic images that are the hallmark of rayitrgc the cone will decrease this probability allowing for fewir,
We believe that any specialized hardware for ray tracingtmuay, SIMD advantages. With a cone angle of 180 degrees a
be evaluated for its ability to deal with these all-impottarpacket of secondary rays will be completely incoherent and
secondary rays. the probability of multiple rays hitting the same primity/es

A common approach to accelerating visibility rays is to useery slim. We used the same cone angle sampling scheme in
“packets” of rays to amortize cost across sets of rays [2§],[Manta, and tested TRaX versus Manta on common benchmark

12

scenes to show the degrees of slowdown that each path tracer VII. CONCLUSION

suffers as rays become incoherent.))
We have shown that a simple, yet powerful, multicore

As explained above, we used a fixed ray depth of three. Weulti-threaded architecture can perform real-time ragitg
varied the size of the image and the number of samples penning at modest clock speeds on achievable technology. By
pixel and gathered data for the number of rays per second &xploiting the coherence among primary rays with similar
each test for both path tracers. For TRaX we also recorded ¢litection vectors, the cache hit rate is very high, even fioals
cache hit rates and thread issue rates within the singletlbate caches. There is still potential to gain even more benefihfro
was simulated. The images themselves can be seen in Figuggimary ray coherence by assigning nearby threads regibns o
with data about the images shown in Table I. the screen according to a space filling curve.

Our primary interest is the speed for each path tracerW|th the help of our cycle-accurate simulator we expect

relative to itself as the cone angle is modified. The resultl% improve the performance of our system along many di-

are shown in Table VII. We show that as the secondary rayjs N=1ons. In pamgular, there may be potential for greater
. . erformance by using a streaming memory model for an
become incoherent the TRaX architecture slows to between - .
: telligently selected subset of memory accesses in grall
97% and 99% of the speed with a narrow cone angle. On o . N
with the existing cache memory. Ray/BVH intersection in
the other hand, the Manta path tracer on the same scene with,. - ,)
rticular will likely benefit dramatically from such a memgo

the same cone angles slows to between 47% to 53% of R

speed on the narrow angle cone. We believe that this vaﬁda%é{smm [58]. We will also improve the memory system in the
simulator to more accurately simulate L2 cache performance

our approach of accelerating single-ray performance witho " .
relying on packets and SIMD instructions. Itis, of course, pot completely clear yet that our non—SIMD
approach is superior to a SIMD approach. The main overhead
In addition to showing that the TRaX architecture maintainsf a non-SIMD core is replication of the I-cache and decode
performance better than a packet-based path tracer in ¢ke flngic. We are currently exploring sharing a multi-banked I-
of incoherent secondary rays, we need to verify that this éache among a number of thread processors to amortize this
not simply due to TRaX being slow overall. So, we alsoverhead. However, the size of the I-caches are small com-
measure millions of rays per second (MRPS) in each of tipared to the D-caches and the functional units so we believe
path tracers. The Manta measurements are made by runrtimat the general overhead of including more I-caches for a
the code on one core of a an Intel Core2 Duo machine runningn-SIMD approach will be fairly small. More importantly,
at 2.0GHz. The TRaX numbers are from our cycle-accurdtge performance advantage on non-coherent secondary rays
simulator assuming a 500MHz speed and using just a singleems to be large and TRaX seems to scale well for these
core with 32 thread processors. We expect these numberydoy important rays.
scale very well as we tile multiple cores on a single die. As In order to explore whether our TRaX architecture per-
mentioned in Section IlII, chips with between 22 to 78 coredsrms well with incoherent secondary rays we implemented
per die would not be unreasonable. a path tracer with an artificially narrowed Lambertian BRDF

benchmark as a simple way to quantify ray coherence. We

. In order to show vyhy TRaxX slows QOwn as it does, we al%?nd that TRaX has only minor slowdown of 97% to 99%
include the cache hit rate from our simulator, and the awera
top speed on our test scenes when the secondary rays

percentage of to_tal threads issuing per cycle in Table V4. .'%ecome highly incoherent. Manta slowed down to 47% to 53%
the cone angle increases, rays are allowed to bounce with X . X

: . o o of top speed on the same scenes with the same mechanism
wider area of possible directions, thus hitting a largemgean

of the scene data. With a smaller cone anale. subseguent rforscontrolling coherency. We attribute the difference he t
. N L ge, q 8¥8rhead of dealing with small packets and the breakdown of
are likely to hit the same limited number of triangles, aliiogv

them to stay cached. As more threads are required to stall éﬁ%vSIMD operation as the packets become highly incoherent,

" o We are in the process of improving our ray tracing ap-
to cache misses, we see fewer threads issuing per cycle. This P P 9 Y g ap

: . . ol ations to drive architectural exploration further.ergoal
is a smaller thread-issue percentage than we saw in previ u%

work [7] which indicates that smaller cores (cores with fewe> O allow for Cook style ray tracing [59] with support for

Thread Processors) may be interesting for path tracing. multisampling. We W'”. also adq support for image based
textures as a comparison against procedural textures, and

Because of the time required to run a cycle-accurate simukxplore hardware support for gradient noise used in praegdu
tion the results from this paper are restricted to relagivelv textures. Some researchers anticipate that a strong niche f
resolution and ray depth. However, if we consider the effetgal time ray tracing will involve shallow ray trees (i.ewfe
of dynamic ray depth computations on an average scene, régfiections), and mostly procedural textures [50]. Procaidu
often lose enough energy to be cut off on or before thréextures using, for example, Perlin noise techniques [43],
bounces especially if Russian-Roulette is employed. Ipdee increase FP ops by about 50% in the worst case, but have
ray depths are required this would likely have the effect &f negligible impact on memory bandwidth. This can have a
improving the TRaX advantage over a packet-based pathrtrapesitive impact on performance by trading computation for
like Manta as the percentage of incoherent rays would isereanemory bandwidth.

(the primary rays would be a smaller percentage of the totalWe have described an architecture which achieves physi-
rays cast). cally realistic, real-time ray tracing with realistic siz®n-

TABLE VII
RESULTS ARE REPORTED FOR THE CONFERENCE AND SPONZA SCENES AN® DIFFERENT RESOLUTIONS WITH A DIFFERENT NUMBER OF RAYS PER
PIXEL. PATH TRACED IMAGES USE A FIXED RAY DEPTH OF THREETRAX RESULTS ARE FOR A SINGLE CORE WITH2 THREAD PROCESSORS RUNNING
AT A SIMULATED 500 MHz. WE EXPECT THESE NUMBERS TO SCALE WELL AS THE NUMBER OFRAX CORES IS INCREASEDMANTA NUMBERS ARE
MEASURED RUNNING ON A SINGLE CORE OF ANNTEL CORE2 DUO AT 2.0GHz. SPEED RESULTS ARE NORMALIZED TO PATH TRACING WITH ALO
DEGREE CONE

13

Conference: 256256 with 4 samples per pixel

ray casting only 10 degrees 60 degrees 120 degrees 180 slegree
Manta MRPS 161 0.8625 0.5394 0.4487 0.4096
Manta speed 1.87 1 0.63 0.52 0.47
TRaX MRPS 1.37 141 1.43 1.43 1.40
TRaX speed .97 1 1.01 1.01 0.99
Cache hit % 88.9 85.1 83.9 83.5 83.2
Thread issue % 52.4 52.4 52.5 52.5 52.4

Sponza: 128128 with 10 samples per pixel

ray casting only 10 degrees 60 degrees 120 degrees 180 slegree
Manta MRPS 1.391 0.7032 0.4406 0.3829 0.3712
Manta speed 1.98 1 0.63 0.54 0.53
TRaX MRPS 0.98 1.01 0.98 0.97 0.98
TRaX speed 0.97 1 0.97 0.96 0.97
Cache hit % 81.5 77.4 76.3 76.0 76.0
Thread issue % 50.6 50.9 50.9 50.7 50.9

straints. Our evaluation has shown that TRaX performs comz]

petitively or outperforms other ray tracing architectyrasd
does so with greater flexibility at the programming level.

ACKNOWLEGEMENT

(13]

The authors thank the other current and former members
of the HWRT group: Solomon Boulos, Al Davis, Spencer
Kellis, Steve Parker, Karthik Ramani, and Pete ShirleysThi4!
material is based upon work supported by the National Seienc

Foundation under Grant No. CCF0541009.

REFERENCES
(1]
[2
3]
[4
5]

E. Catmull, “A subdivision algorithm for computer digyl of curved
surfaces,” Ph.D. dissertation, University of Utah, Decemb974.
T. Whitted, “An improved illumination model for shadedisglay,”
Communications of the ACMol. 23, no. 6, pp. 343-349, 1980.

Press, 1989.

P. Shirley and R. K. MorleyRealistic Ray Tracing Natick, MA: A.
K. Peters, 2003.

D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiositgthod
for non-diffuse environments,” iRroceedings of SIGGRARH986, pp.
133-142.

(6]
(7]

1986, pp. 143-150.
J. Spjut, D. Kopta, S. Boulos, S. Kellis, and E. Brunvarf@iRaX:
A multi-threaded architecture for real-time ray tracingy’ 6th IEEE
Symposium on Application Specific Processors (SABR)e 2008.

[8] E. Lafortune and Y. D. Willems, “Bi-directional pathating,” in Pro-

A. Glassner, Ed.An introduction to ray tracing London: Academic

J. T. Kajiya, “The rendering equation,” iRroceedings of SIGGRARH

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

ceedings of CompugraphicPortugal, December 1993, pp. 145-153. [23]

El

Ray Tracing (RTO8)August 2008.
D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, Bfdrtune, J. A.
Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-Q, Fa

[20]

D. Kopta, J. Spjut, E. Brunvand, and S. Parker, “Comgaiimcoherent
ray performance of TRaX vs. Manta,” IEEE Symposium on Interactve

[24]

framework for realistic image synthesis,” Broceedings of SIGGRARH [25]

1997, pp. 477-494.

[11] J. H. Clark, “The geometry engine: A visi geometry systtor graph-

ics,” in SIGGRAPH ’'82: Proceedings of the 9th annual conference 0j26]

Computer graphics and interactive techniquesNew York, NY, USA:
ACM Press, 1982, pp. 127-133.

J. Poulton, H. Fuchs, J. D. Austin, J. G. Eyles, J. HdieecC. Hsieh,

J. Goldfeather, J. P. Hultquist, and S. Spach, “PIXEL-PL/A\Building

a VLSI based raster graphics system,”@hapel Hill Conference on
VLS|, 1985.

H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J.ADstin,

J. Frederick P. Brooks, J. G. Eyles, and J. Poulton, “Fasersgh
shadows, textures, transparencies, and imgage enhartseinepixel-
planes,” inSIGGRAPH ’'85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniguesNew York, NY,
USA: ACM Press, 1985, pp. 111-120.

M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. HuriThe
triangle processor and normal vector shader: a visi systmhigh
performance graphics,” iIBIGGRAPH '88: Proceedings of the 15th
annual conference on Computer graphics and interactivéartiggies
New York, NY, USA: ACM Press, 1988, pp. 21-30.

ATI, “Ati products from AMD,” http://ati.amd.com/prducts/index.html.
nVidia Corporation, www.nvidia.com.

T. J. Purcell, 1. Buck, W. R. Mark, and P. Hanrahan, “Ragcing

on programmable graphics hardwarBCM Transactions on Graphics
vol. 21, no. 3, pp. 703-712, 2002.

D. Balciunas, L. Dulley, and M. Zuffo, “Gpu-assistedyraasting
acceleration for visualization of large scene data setsProceedings

of the IEEE Symposium on Interactive Ray Tracing REg® 2006.

J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallékealtime ray
tracing on GPU with BVH-based packet traversal,” Rmoceedings of
the IEEE/Eurographics Symposium on Interactive Ray TdRT07
Sep. 2007, pp. 113-118.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,vitlia tesla:

A unified graphics and computing architectur&ficro, IEEE, vol. 28,

no. 2, pp. 39-55, March-April 2008.

nVidia SIGGRAPH Ray Tracing Demo,
http://developer.nvidia.com/object/nvision08- IR Tt
I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Defolstea Scenes
using Dynamic Bounding Volume Hierarchies®CM Transactions on
Graphics vol. 26, no. 1, 2007.

S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. KaizShirley,
and |. Wald, “ Packet-based Whitted and Distribution Raycifrg,” in
Proc. Graphics InterfaceMay 2007.

D. Koufaty and D. T. Marr, “Hyperthreading technology the netburst
microarchitecture,”|IEEE Micro, vol. 23(2), pp. 56-65, March-April
2003.

R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 pgha dual-core
multithreaded processor/[EEE Micro, vol. 24(2), pp. 40-47, March-
April 2004.

P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: 22-Way
Multithreaded Sparc ProcessotEEE Micro, vol. 25(2), pp. 21-29,
March-April 2005.

August 2008,

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

1BM, “The Cell project at
http://www.research.ibm.com/cell.

H. P. Hofstee, “Power efficient processor architectanel the cell pro-
cessor,” inHPCA '05: Proceedings of the 11th International Symposium
on High-Performance Computer Architectu2005. [
C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, yR&@racing

IBM

on the CELL Processor,” ifProceedings of the IEEE Symposium on54] r
[55] “Artisan

Interactive Ray Tracing RTQ&ep. 2006.
H. Kobayashi, K. Suzuki, K. Sano, and N. O. ba, “InteractRay-

Tracing on the 3DCGIRAM Architecture,” iRroceedings of ACM/IEEE [56]

MICRO-35 2002.
D. Hall, “The AR350: Today’s ray trace rendering proses’ in Pro-

ceedings of the EUROGRAPHICS/SIGGRAPH workshop on Grphie /]

Ha rdware - Hot 3D Sessigr2001.

J. Schmittler, 1. Wald, and P. Slusallek, “SaarCOR - Ardheare
Architecture for Realtime Ray-Tracing,” ifProceedings of EURO-
GRAPHICS Workshop on Graphics Hardwarg002, available at
http://graphics.cs.uni-sb.de/Publications.

J. Schmittler, S. Woop, D. Wagner, P. Slusallek, and Weall, “Real-
time ray tracing of dynamic scenes on an FPGA chip,Pioceedings
of Graphics Hardwarg 2004, pp. 95-106.

S. Woop, J. Schmittler, and P. Slusallek, “RPU: a prograble ray
processing unit for realtime ray tracing,” Rroceedings of International
Conference on Computer Graphics and Interactive TechsiR@05, pp.
434-444.

S. Woop, E. Brunvand, and P. Slusallak, “Estimatingf@enance of
an ray tracing ASIC design,” itEEE Symposium on Interactive Ray
Tracing (RT06) September 2006.

V. Govindaraju, P. Djeu, K. Sankaralingam, M. VernomdaW. R.
Mark, “Toward a multicore architecture for real-time rageing,” in
IEEE/ACM International Conference on Microarchitectur©ctober
2008.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. AbraB. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E.hGnki,

T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 acthite
for visual computing,”ACM Transactions on Graphicvol. 27, no. 3,
August 2008.

E. Reinhard, C. Hansen, and S. Parker, “Interactivetraging of time
varying data,” in Eurographics Workshop on Parallel Graphics and
Visualization 2002, pp. 77-82.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-BaB] “Interactive
ray tracing for isosurface rendering,” Proceedings of IEEE Visualiza-
tion, 1998, pp. 233-238.

W. Martin, P. Shirley, S. Parker, W. Thompson, and E. nRard,
“Temporally coherent interactive ray tracindggurnal of Graphics Tools
vol. 7, no. 2, pp. 41-48, 2002.

D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Vaeshhevel
of Detail for 3D Graphics New York: Elsevier Science Inc., 2002.
M. Anid, N. Bagherzadeh, N. Tabrizi, H. Du, and M. S.-E..,.M
“Interactive ray tracing using a simd reconfigurable amsttiire,” sbac-
pad vol. 0, p. 0020, 2002.

H. Du, A. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh, Midd, and
M. Fernandez, “Interactive ray tracing on reconfigurabledsimor-
phosys,"Design Automation Conference, 2003. Proceedings of the ASP
DAC 2003. Asia and South Pacifipp. 471-476, 21-24 Jan. 2003.
The RenderMan Interface,
http://renderman.pixar.com/products/rispec/risgetf/RISpec3 2.pdf.

P. Shirley,Fundamentals of Computer GraphicsNatick, MA, USA:
A. K. Peters, Ltd., 2002.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hugh@emputer
graphics: principles and practice (2nd ed.) Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1990.

K. Perlin, “An image synthesizerACM SIGGRAPH Computer Graph-
ics, vol. 19, no. 3, pp. 287-296, 1985.

J. C. Hart, “Perlin noise pixel shaders,”HWWS '01: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardwarg
New York, NY, USA: ACM Press, 2001, pp. 87-94.

K. Perlin, “Improving noise,”ACM Transactions on Graphicwol. 21,
no. 3, pp. 681-682, 2002.

P. Shirley, K. Sung, E. Brunvand, A. Davis, S. Parkerd & Boulos,
“Rethinking graphics and gaming courses because of fastraajng,”
in SIGGRAPH '07: ACM SIGGRAPH 2007 educators progr&d07.

F. E. Nicodemus, “Directional reflectance and emisgidf an opaque
surface,” Appl. Opt, vol. 4, no. 7, p. 767, 1965. [Online]. Available:
http://ao.osa.org/abstract.cim?URI=ao0-4-7-767

(58]

14

research,” [52] G. J. Ward, “Measuring and modeling anisotropic reftetct in SIG-

GRAPH '92: Proceedings of the 19th annual conference on @oenp
graphics and interactive techniguesNew York, NY, USA: ACM, 1992,
pp. 265-272.

] D. Burger and T. Austin, “The Simplescalar Toolset, &fen 2.0,

University of Wisconsin-Madison, Tech. Rep. TR-97-134@ne) 1997.
“Synopsys inc.” http://www.synopsys.com.

cmos standard cells,” Available from ARM Lid.
http://www.arm.com/products/physicalip/standardbgthl.

I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Irtetive rendering
with coherent ray tracing,” itComputer Graphics Forum (Proc. EURO-
GRAPHICS 2001)vol. 20, no. 3, 2001, pp. 153-164.

J. Bigler, A. Stephens, and S. Parker, “Design for pelrahteractive
ray tracing systems,Interactive Ray Tracing 2006, IEEE Symposium
on, pp. 187-196, Sept. 2006.

C. Gribble and K. Ramani, “Coherent ray tracing via atrefiltering,”
in IEEE Symposium on Interactive Ray Tracing (RT@8)gust 2008.

[59] R. L. Cook, T. Porter, and L. Carpenter, “Distributed/ raacing,” in

Proceedings of SIGGRARH 984, pp. 165-174.

Josef Spjut received the B.S. degree from the
University of California, Riverside in Riverside, Cal-
ifornia in 2006 in Computer Engineering.

He is currently a Ph.D. student at the University of
Utah in Salt Lake City, Utah. His research interests
include computer architecture, VLSI circuits, and
computer graphics.

Andrew Kensler is a Ph.D. student in the School of

Computing at the University of Utah and a research
assistant with the Scientific Computing and Imaging
(SCI) Institute. He received the B.A. degree in

computer science from Grinnell College in 2001.
His research focuses on interactive ray tracing, with
interests in hardware ray tracing and photorealistic
rendering.

Daniel Kopta received the M.S. degree from the

University of Utah in 2008. He is currently a Ph.D.

student, also at the University of Utah, Salt Lake
City, Utah. His research interests are in computer
graphics, ray tracing, and machine learning.

Erik Brunvand received the M.S. degree from the
University of Utah, Salt Lake City, Utah in 1984 and
the Ph.D. degree from Carnegie Mellon University,
Pittsburgh, Pennsylvania in 1991.

He is currently an Associate Professor in the
School of Computing at the University of Utah in
Salt Lake City, Utah. His research interests include
computer architecture, VLSI circuits, asynchronous
and self-timed circuits and systems, and computer
graphics.

