
Ray-Triangle and Ray-Quadrilateral Intersections

in

Homogeneous Coordinates

Pat Hanrahan

Geometry Computing Group
Minnesota Supercomputer Center

Minneapolis, MN 55415
hanrahan@princeton.edu

Experience shows that operation with homogeneous coordinates produces,
at least with beginners, something like physical discomfirt. Felix Klein

Recent articles in Ray Tracing News have discussed solutions to the problem of in-
tersecting a ray with a triangle using the triangle’s barycentric coordinates. This article
shows yet another way to think about the ray-triangle intersection problem. The idea is
to think of the barycentric coordinates of the intersection point, not as the ratio of areas,
but rather as the as ratios of the volume of tetrahedra. This technique can also be used
to derive formulae for ray-quadrilateral intersection by using the fact that associated with
every planar quadrilateral is a unique triangle. Finally, I would like to show the connection
between these results and Plucker line coordinates. This insight leads to quite an efficient
algorithm.

Most people studying computer graphics learn about homogeneous coordinates and
projective geometry because they allow perspective transformations to be expressed as
linear transformations involving 4x4 matrices. When writing a ray tracer, however, most
authors have duplicated Turner Whitted’s original approach where eye rays are directly
formed in world space, obviating the need for a explicit viewing transformation. As a
result the geometric calculations are usually expressed using familiar vector algebra in a
Euclidean coordinate system. However, homogeneous coordinates were not invented to
just express projective transformations; they have the advantage that many geometric
calculations have elegant solutions when expressed in term of these coordinates. In fact,
Felix Klein goes on to say in the same book from which the opening quote is taken.

For our general standpoint, the questions of ordinary vector analysis
constitute only a chapter out of a profusion of more general problems
[in geometry].

For those interested in more about homogeneous coordinates and their uses in geom-
etry, I suggest the references at the end of the article and I particular a recent thesis by J.
Stolfi. I also might recommend my paper entitled, “The Homogeneous Geometry Calcu-
lator,” which describes how these ideas can be used in geometric modeling and computer
graphics.
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Points, Planes, Lines and Determinants
In three-dimensional projective geometry the homogeneous coordinates of points are 4-
vectors

P =




x
y
z
w




The 3D location of a point is interpreted to be (x/w, y/w, z/w). Because of the division
by w, the homogeneous coordinates of a point can be multiplied by a constant (other than
0) without effecting its location. If w is equal to 0, the point is interpreted to at infinity in
the direction given by the first three coordinates. In projective geometry, points at infinity
in opposite directions are considered the same.

A line is uniquely determined by two points. All points on the line can be generated
by forming linear combinations of two points (Figure 1).

P = s1P1 + s2P2

One can interpret this equation by stating that P1 and P2 define a coordinate system on
the line, and that the coordinates of an individual point are are (s1, s2). In particular, the
coordinates of P1 are (1, 0) and the coordinates of P2 are (0, 1). Notice as s1 increases
positively that P moves towards P1 and as s2 increases positively P moves towards P2.
Furthermore, these coordinates have a nice geometric interpretation: s1 is the ratio of the
length of PP1 to the length of P1P2, and s2 is the ratio of the length of P P2 to the
length of P1P2, These observations allow us to enumerate the set of points on the line
segment P1P2.

{ (s1, s2) : (s1 > 0)and(s2 > 0) }

Often it is convenient to normalize the coordinates so that their sum is one.

s1′ =
s1

s1 + s2

s2′ =
s2

s1 + s2

Coordinates normalized in this way are referred to as barycentric coordinates and were
originally developed by Moebius. With this representation, if the two points P1 and P2
both have w = 1, then all linear combinations involving barycentric coordinates will also
have w = 1. The advantage of this from a computational point of view is that this allows
us to effectively ignore the extra coordinate. However, if we allow other values for w, it
is not necessary to normalize the coordinates in this way, in the process saving the cost
of performing the division and avoiding a nasty singularity if the denominator happens to
be 0. A basic rule of thumb when using homogeneous coordinates is: Be suspicious of any
formula requiring a division. Said another way: Delay all divisions until it is absolutely
necessary to interpret a point as a 3D location.

Unfortunately, there is a subtlety having to do with signs. As shown above, we defined
the interval between P1 and P2 as being the region where s1 and s2 are both positive.
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Now suppose s1 and s2 are both multiplied by −1. Then they are both negative, and
the point formed as their linear combination −1 times the point they originally generated.
But, by our convention that multiplying a point by a constant does not change its position,
these two points represent the same location on the line. Note, however, in this case the
point generated will w < 0. It is tempting then to divide homogeneous points into two
classes based on the sign of w, and to say that a point with negative w coordinate is
inside other points with negative w coordinates (since it can then be formed by positive
linear combinations of them). A thorough discussion of this approach is contained in J.
Stolfi’s thesis. For the purposes of this paper, we will always assume w > 0. Without this
assumption all the formulas involving signs, orientations and determinants are not valid.

In the same way that an axiom of projective geometry states that a unique line is
determined by two points, so another axiom states that a unique plane is determined by
three points. All points on this plane can be generated by forming linear combinations of
three points (Figure 2).

P = u1P1 + u2P2 + u3P3

The coordinates of point in the plane coordinate system defined by the triangle P1P2P3
are (u1, u2, u3). These coordinates have the geometric interpretation that u1 is the ratio
of the area of triangle PP2P3 to P1P2P3, and u2 is the ratio of P1PP3 to P1P2P3,
and u3 is the ratio of P1P2P to P1P2P3. The set of points inside the triangle is

{ (u1, u2, u3) : (u1 > 0)and(u2 > 0)and(u3 > 0) }
Now suppose there is a fourth point P4 contained in the plane. Then P4 can be

written as a linear combination of P1, P2, and P3. So there must be some set of values
(u1, u2, u3, u4) which satisfy the following equation

u1P1 + u2P2 + u3P3 + u4P4 = 0

Let’s write this out as a set of linear equations

x1u1 + x2u2 + x3u3 + x4u4 = 0
y1u1 + y2u2 + y3u3 + y4u4 = 0
z1u1 + z2u2 + z3u3 + z4u4 = 0

w1u1 + w2u2 + w3u3 + w4u4 = 0

Recall from linear algebra that this set of homogeneous equations will have a solution iff
the following determinant equals 0.

|P1P2P3P4| =

∣∣∣∣∣∣∣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

w1 w2 w3 w4

∣∣∣∣∣∣∣
= 0

If we interpret P4 as an arbitrary point P = (x, y, z, w) in the plane, this equation is the
plane equation.∣∣∣∣∣∣

y1 y2 y3

z1 z2 z3

w1 w2 w3

∣∣∣∣∣∣
x −

∣∣∣∣∣∣
x1 x2 x3

z1 z2 z3

w1 w2 w3

∣∣∣∣∣∣
y +

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

w1 w2 w3

∣∣∣∣∣∣
z −

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣
w = 0
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which can be derived by expanding the 4x4 determinant into subdeterminants. The four
3x3 subdeterminants form the homogeneous coordinates of the plane through the three
points. We will symbolically express this equation as

|P1P2P3| · P = 0

Although we will not go into it in this article, all the results and theorems in projective
geometry are symmetric with respect to points and planes. This means that any result
involving points may be interpreted as a result involving planes just by replacing the
word point with planes. This is called duality. This implies that all the calculations
performed with homogeneous point coordinates have dual analogues using homogeneous
plane coordinates.

Suppose that P4 is not in the plane. Then the four points determine a coordinate
system in space. All points in space can be written as linear combinations of these 4 points
(Figure 3).

P = u1P1 + u2P2 + u3P3 + u4P4

The barycentric coordinates in a tetrahedron can be interpreted as the ratio of volumes
of tetrahedra. That is, u1 is the ratio of the volume of the tetrahedra PP2P3P4 to
P1P2P3P4, u2 is the ratio of PP3P4P1 to P1P2P3P4, etc.

The final geometric fact that we need is that the determinant of four points is pro-
portional to the volume of the tetrahedron defined by the four points.

volume(P1P2P3P4) = 1over6

∣∣∣∣∣∣∣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

w1 w2 w3 w4

∣∣∣∣∣∣∣

(If the w coordinates of the four points are not 1’s, the volume is multiplied by the product
of the four w coordinates.) The verification of this formula is left as an exercise. It’s also
useful to recall two other properties of determinants. First, the sign of a determinant
changes if adjacent rows or columns are interchanged.

|P1P2P3P4| = −|P2P1P3P4| = |P2P3P1P4| = ...etc.

Thus the volume of the tetrahedra is also signed. This can be interpreted geometrically
by saying that the volume |P1P2P3P4| is positive if it is right-handed . It is right-handed
if when the fingers of your right hand are made to follow P2P3P4, your thumb points
towards P1. Second, if any point is duplicated in a determinant, the determinant is equal
to 0; this is intuitively obvious given the interpretation of the determinant as a volume.
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Ray-Triangle Intersection
With the above preliminaries, we are now prepared to write down the ray-triangle inter-
section formulas. Define a ray by two points R1 and R2

R = s1R1 + s2R2,

and the triangle by three points P1, P2, and P3

P = u1P1 + u2P2 + u3P3.

This situation is illustrated in Figure 4.
To solve for (s1, s2) observe that the point of intersection must lie on the line containing

the ray R1R2 and on plane containing the triangle P1P2P3. These constraints are
expressed by

|P1P2P3| · R = s1|P1P2P3R1| + s2|P1P2P3R2| = 0

By inspection, this equation has a solution at

s1 = |P1P2P3R2|
s2 = |P3P2P1R1|

,

which can be verified as follows:

|P1P2P3R2||P1P2P3R1| + |P3P2P1R1||P1P2P3R2| =
|P1P2P3R2||P1P2P3R1| − |P1P2P3R1||P1P2P3R2| = 0.

The geometric interpretation of this solution is that s1 is equal to the volume of the
tetrahedron P1P2P3R2, and s2 is equal to the volume of the tetrahedron P3P2P1R1.
This is illustrated in Figure 4A.

Alternatively, to solve for (u1, u2, u3) observe that the point of intersection must also
lie in any plane containing the ray. In particular it must lie in the planes of the triangles
R1R2P1, R1R2P2, and R1R2P3.

|R1R2P1| · P = u2|R1R2P1P2| + u3|R1R2P1P3| = 0

|R1R2P2| · P = u1|R1R2P2P1| + u3|R1R2P2P3| = 0

|R1R2P3| · P = u1|R1R2P3P1| + u2|R1R2P3P2| = 0

By inspection, these equations have solutions

u1 = |R1R2P2P3|
u2 = |R1R2P3P1|
u3 = |R1R2P1P2|
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Verifying this for the first case yields:

u2|R1R2P1P2| + u3|R1R2P1P3|
= |R1R2P3P1||R1R2P1P2| + |R1R2P1P2||R1R2P1P3|
= |R1R2P3P1||R1R2P1P2| − |R1R2P1P2||R1R2P3P1| = 0

The other cases are just as easily verified. These solutions also have a very simple geometric
interpretation. The coordinate u1 is equal to the volume of the tetrahedron R1R2P2P3.
In fact, all the coordinates are volume of tetrahedra formed by the two end points of the
ray and the two points opposite the point associated with the coordinate. This is shown
in Figure 4B.

To actually test for an intersection with the triangle we need to determine whether
the intersection is inside the triangle. This is easily done by testing whether all three
coordinates are positive. In fact, it is best to test each coordinate as it is computed, since
if it is negative, it is not necessary to compute the other coordinates. To test whether the
intersection point is contained between the two endpoints of the rays, check that both s1

and s2 are positive.

Ray-Quadrilateral Intersection

To test whether a planar quadrilateral is intersected by a ray can be done using the above
triangle intersection algorithm. This is possible because every planar quadrilateral defines
a unique reference triangle. The coordinates of the vertices of the quadrilateral in this
reference triangle are: (1,1,1), (-1,1,1), (1,-1,1) and (-1,-1,1). And, the equations of lines
connecting the four sides are:

u1 + u3 >= 0
−u1 + u3 >= 0

u2 + u3 >= 0
−u2 + u3 >= 0

So, a ray-quadrilateral intersection can be computed by first computing the coordinates
of the ray intersection with the reference triangle as described in the last section. Then,
these coordinates are tested to see whether they lie inside the unit square.

Figure 5 shows the reference triangle associated with quadrilateral whose corners are
A, B, C and D. These points naturally define six lines: two pairs of opposites, (AB,
CD) and (AD, BC); and a diagonal pair, (AC, BD). These pairs intersect in three
points which define a triangle: P1 = AB × CD, P2 = AD× BC, and P3 = AC× BD.
Note that if two lines in a line pair are parallel, they intersect at a point at infinity. The
proof that in this coordinate system the quadrilateral is a unit square can be found in the
references. [Texture mapping.]
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Line Coordinates
Finally let me mention a connection between these determinants and another representa-
tion of lines in homogeneous coordinates. To motivate this new representation, note that
the ray-triangle calculation involves calculating determinants of the type |P1P2R1R2|.
Normally when generating an image in a ray tracer, each triangle is tested against many
rays and each ray against many triangles. Thus, it is worthwhile to preprocess triangles
and rays since the preprocessing cost will be amortized over all the intersection tests. So
this leads to the question: Is there some way to rearrange the above determinant into a
set of terms involving only P1 and P2 and another set only involving R1 and R2? If this
is done, then these terms can be precalculated. An example of a similar rearrangement of
determinants was the plane |P1P2P3|. This is an interpreted as four 3 subdeterminants
which can be precomputed. To compute the 4x4 determinant P1P2P3R2, all that is
required is a four element dot product of the plane P1P2P3 with the point R2.

In the line representation by two points used above, the coordinates of points on the
line depend on the choice of R1 and R2. Is there a line representation that does not
change if R1 and R2 change? One such choice are the 2x2 determinants

pxy =
∣∣∣∣
x1 x2

y1 y2

∣∣∣∣ = x1y2 − x2y1

pxz =
∣∣∣∣
x1 x2

z1 z2

∣∣∣∣ = x1z2 − x2z1

pxw =
∣∣∣∣
x1 x2

w1 w2

∣∣∣∣ = x1w2 − x2w1

pyz =
∣∣∣∣
y1 y2

z1 y2

∣∣∣∣ = y1z2 − y2z1

pyw =
∣∣∣∣
y1 y2

w1 w2

∣∣∣∣ = y1w2 − y2w1

pzw =
∣∣∣∣
z1 z2

w1 w2

∣∣∣∣ = z1w2 − z2w1

Since pii = 0 and pij = −pji, only these six of the sixteen possible 2x2 determinants are
non-zero and unique. These six numbers are called the Plucker coordinates of a line.

It can be shown that the determinant |P1P2R1R2| can be written as

|P1P2R1R2| = pxyrzw + pxzrwy + pxwryz + pzwrxy + pwyrxz + pyzrxw.

where the p’s are the coordinates of the line P1P2 and the r’s are the coordinates of the
line R1R2. (Note the change in sign by setting pwy = −pyw and rwy = −ryw.) Using
these line coordinates, each determinant can be calculated using only 6 multiplies and 5
adds!
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