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Abstract 

Cook, Porter, and Carpenter coined the phrase 
"distributed ray tracing" to describe a technique 
for using each ray of a super-sampled ray tracing 
procedure as a sample in several dimensions to 
achieve effects such as penumbras and motion blur 
in addition to spatial anti-aliasing. The shade to 
be displayed at a pixel is a weighted integral of 
the image function. The purpose of using many rays 
per pixel is to estimate the value of this 
integral. In this work, a relationship between the 
number of sample rays and the quality of the esti- 
mate of this integral is derived. Furthermore, the 
number of rays required does not depend on the 
dimensionality of the space being sampled~ but only 
on the variance of the multi-dimensional image 
function. The algorithm has been optimized through 
the use of statistical testing and stratified 
sampling. 

CR Categories and Subject Descriptions: 1.3.3 
[Computer Graphics]: Picture/Image Generation - 
display algorithms; 1.3.7 [Computer Graphics]: 
Three-dimensional Graphics and Realism - Shading, 
Shadowing, Texture, Visible Line/Surface Algor- 
ithms; 

Additional Keywords and Phrases: Ray Tracing, 
Anti-aliasing, Penumbras, Shadows, Translucency, 
Transparency 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and /o r  specific permission. 

© 1985 ACM 0-89791-166-0/85/007/0061 $00.75 

Introduction 

The problem of visual artifacts appearing in 
synthesized images due to the finite resolutiOn of 
displays has been a concern in computer graphics 
for many years. Several techniques, collectively 
referred to as anti-aliasing, have been developed 
for combatting the problem [3,5,6,7,9,10,14,16]. 
Only recently, however, has this problem been a 
paramount concern in the implementation of ray 
tracing algorithms [I~4,11~15]. All solutions to 
the problem begin with the same theoretical basis 
[5]. The correct value to display at a pixel is a 
weighted integral of shades in the neighborhood of 
the pixel. Direct computation of this integral is 
expensive, especially in color displays, since it 
must be done for at least three primary values. 
Several authors have suggested sampling points or 
areas around the pixel as a method for approxi- 
mating this integral. An important question is 
"How many samples is enough?". The two standard 
answers are "more is always better" and "we find 
that n is usually enough," where n is some integer 
between 4 and 256. Given that color values are 
stored with limited precision, it seems likely that 
the number of useful samples per pixel is also 
limited. If the sampling is done in some fixed 
pattern, then geometries always exist for which 
that particular sampling pattern generates a poor 
estimate of the integral and unwanted artifacts are 
created. However, if the sampling is done 
randomly, this problem can be eliminated. Further- 
more, a statistical test can be developed to deter- 
mine when enough samples have been used. The 
following section describes the derivation of this 
result. 

In the implementation of a ray tracing algor- 
ithm, this result can be used to estimate the 
number of rays needed to accomplish spatial anti- 
aliasing. It is also demonstrated that the same 
result holds when the ray is considered to be a 
multidimensional sample. It applies, then, to 
implementations which use each ray as a sample, not 
only of the pixel area, but also of light source 
area, surface reflection direction, surface 
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refraction direction, and similar variables. The 
number of samples required do not depend directly 
on the number of dimensions being sampled, there- 
fore, sampling an additional dimension may not 
increase the number of samples needed. A statis- 
tical technique known as stratified sampling is 
used to select samples such that, if the variation 
among the first samples is small, no further 
samples are required. This technique is used to 
reduce sampling, as in adaptive subdivision algor- 
ithms [2,15], without disturbing the statistical 
properties required for the main result to remain 
valid. 

In the results section, several images are 
presented to demonstrate the quality that can be 
achieved. To show the efficiency of the implemen- 
tation, a two-dimensional histogram of the number 
of sample rays for each pixel are given for each 
image. In addition, histograms showing the number 
of pixels requiring various amounts of sampling are 
provided. 

Theory 

In the following, X represents the point in 
multidimensional space to be sampled. F(X) is the 
"true" continuous image to be approximated. P(X) 
is the filter used in smoothing the image to accom- 
plish the anti-aliasing. 

For X g R n, we must evaluate convolutions which 
can be written as integrals of the form 
S F(X)P(X)dX [5]. In the case that P(X) ~ 0 for 
R n 

X g R n and S P(X)dX = i, then P(X) is a prob- 
R n 

ability density function. If we think of X as an 
n-dimensional random variable with probability 
density function P(X), then the value of the 
integral [ F(X)P(X)dX is the expected value of F 

R n 

which is written E(F(X)). 

Rather than estimating this integral using 
traditional numerical techniques, we propose a 
statistical estimate. Let Xi, X2, ..., X N be inde- 

pendent identically distributed random variables 
with density function P(X). Let 

F N = (l/N) Z F(X.). 
i=l i 

If E(F(X)) exists, then by the strong law of large 
numbers [8], 

lim F N = E(F(X)) with probability one, 
N-~ 

and so for sufficiently large N, F N is a good esti- 

mate of E(F(X)). We also observe that 

E(F N) = E(F(X)) 

which means that F N is an unbiased estimator for 
E(F(X)). 

A statistical measure of the difference between 
F N and E(F(X)) is the variance of F N which is 

defined to be 

E (F N - E(F(X))) 2 = (E(F2(X))-E(F(X))2)/N 

= VAR(F(X))/N. 

We observe that not only does F N converge to 

E(F(X}} as N gets large but that the variance of F N 
about E(F(X)) is VAR(F(X))/N. 

Two points of this formulation should be empha- 
sized. First, just as in more traditional numer- 
ical schemes for evaluating integrals, the error 
can be made arbitrarily small by evaluating the 
function at sufficiently many points. In our 
problem, these points are chosen randomly with 
density P(X). The second important point is that 
the error in our estimate of E(F(X)) is not intrin- 
sically a function of the dimension of the space 
but depends only on the variation of F over those 
dimensions. The number of samples to be thrown is 
not the product of the number of samples required 
for each dimension; instead, the number of samples 
depends directly on the variability of F. 

It is reasonable to try to construct a sampling 
scheme so that the variances of our estimates 
throughout the scene are approximately equal. 
Ideally, we would determine a threshold, T, and 
sample until the variance of our estimate was less 
than T. However, since the variance at each point 
is not known a priori, we construct the following 
statistical test. Let 

N 

2 = (i/N) ~ (F(Xi)-FN)2. SN 
i=l 

2 is an approximation of VAR(F(X)) from the S N 

generated data. Define the number X~(N-i) so 

that, under a normal sampling theory, 

Probability (N*S~/VAR(F(X)) < X~<N-i)) : 9" 

This notation has been chosen because the distribu- 

N*S~/VAR(F(X)) under the normal theory lion of is 

the E 2 distribution with N-l degrees of freedom 

2 / X ( N - i ) .  I f  S N / X ( N - i )  < T, [8]. Compute S N 

then stop sampling, otherwise, throw more samples. 
This test is constructed so that the 

(VAR(F(X))/N < S~/X~(N-i)) = 1-9 Probability 

and so the probability of stopping when 
VAR(F(X))/N > T is less than 9. The threshold, T, 
is chosen sufficiently small so that the variance 
of the computed values is small enough to provide a 
good estimate of the true color values. Since this 
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is a statistical settingp one can not  guarantee 
that a good estimate will be calculated at every 
pixel. In order t o  assure that a good estimate is 
obtained most of the time, the parameter ~, the 
failure rate, is chosen to be small. 

Further consideration of the error of our esti- 
mate shows that for certain geometries, the vari- 
ance of the estimate can be reduced by the use of 
stratified sampling. Stratification denotes selec- 
tion from several subregions into which a region is 
divided [12]. In particular, n dimensional Eucli- 
dean space can be partitioned and samples thrown 
into each region. Consider the case 

that R n is divided into m regions and that N. sam- 
N. J 

pies ix..}l j=l,...,m are thrown into each region 
Ill= 1 

where the numbers N./N are proportional to the 
J 

probability of the jth region. The estimate of the 
average value of F is the same as before and by 
using a stratified sample of this type, the varia- 
tion of F N can be reduced. Let 

m N. 
N = ~ N. and F. = (i/N) I j F(X..). 

j=l J l l i=l ~J 

Now 

m 

F N = (l/N) ~ N°F.. 
j=l jl 

The variance of this estimate is the weighted 

average of the variances over each region of R n 
[12], that is, 

m 

VAR(F N) = ( l / N )  ~ N.VAR(F.). 
j=l j 3 

If the variances of F over the individual regions 
are sufficiently small compared to the variance 
over the whole spacer then there will be a reduc- 
tion i n  variance. 

Consider a linear boundary between two homoge- 
nous regions in the plane and a density function 
which is radially symmetric about a point on the 
boundary in the plane (Figure I). If the plane is 
divided into four equal quadrants about this point 
and stratified sampling is performed, then it can 
be seen that in the worst case, the variance of the 
estimate is reduced by a factor of 2 and in the 
best case (the boundary is aligned with the parti- 
tion), the variance is (almost magically) equal to 
zero. 

IAIhL t e 

F i g u r e  1 

I m p l e m e n t a t i o n  

To compute the pixel values in a distributed 
ray tracing implementation, samples are drawn. As 
the samples are created, incremental sums of F(X.) 

I 

and F2(Xi) are kept. The sampling continues until 

the exit criterion S~/X~(N-1) < T is met.  
N p 

An important issue is how to choose the values 
for T and 6. Let M be the maximum or worst case 
variance that will be tolerated for a scene. Any 
estimate to the variance that is greater than M 
should never pass the early exit test and should 
force the maximum amount of samples to be used. To 
force this to happen, T should be set so that~ at 
the maximum number of samples, the correct balance 

between the variance and the X 2 test will be met 
and the test will pass. Let Z be the maximum 
number of samples to be allowed. This value is 
usually determined by computer run time const- 
raints. T can be calculated from the maximum vari- 
ance and the maximum number of samples by the 
following formula 

T = M/X~(Z-1).  

Now, when the variance of the samples is greater 
than or equal to the maximum variance allowed, the 
maximum number of samples are guaranteed to be 
used. Define ~ to be the minimum color difference 
that can be represented by the display medium. For 
a raster devices the minimum color difference is 

usually I/(2 b) where b is the number of bits in the 

frame buffer for a primary color. If the differ- 
ence between two colors is less than A, then the 
difference cannot be displayed. A value for the 
maximum variance, M, should be of the same magni- 
tude as the minimum difference in colorp A. 

? 

A table containing the values of T*X~(N-i) for 
q 

N=I,...,Z can be calculated in a preprocessing step 
for maximum efficiency. The early exit test 
becomes a table lookup and a comparison. The value 
of ~ now serves to spread the values of the table 
between zero and M. The larger the value for ~, 
the larger the spread of values becomes and the 
earlier the variance can pass the test. A tradeoff 
exists between a lower ~ value and more accuracy or 
a higher ~ value and less overall sampling and 
computing time. The value chosen for 8 is a conse- 
quence of the quality required for a particular 
application and the amount of resources available. 

S t r a t i f i e d  sampl ing  a l l o w s  f o r  sampl ing  a 
d i s t r i b u t i o n  w i t h  a good a p p r o x i m a t i o n  to  t he  t r u e  
mean w i t h  fewer  s a m p l e s .  The r e g i o n  to  be sampled 
i s  broken i n t o  s e v e r a l  s m a l l e r  r e g i o n s  such t h a t  
the  c o m b i n a t i o n  o f  the  d i s t r i b u t i o n s  o f  the  s m a l l e r  
r e g i o n s  i s  t he  same as  d i s t r i b u t i o n  of  t h e  o r i g i n a l  
r e g i o n .  I f  t h e  r e g i o n  i s  broken i n t o  s m a l l e r  
r e g i o n s  in  a s e n s i b l e  manner ,  a ve ry  few samples  
w i l l  s e r v e  t o  p r o p e r l y  sample the  r e g i o n  of  
interest. The key is to set up the division of the 
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region so that the samples are as well distributed 
as possible while still following the distribution 
function accurately. This prevents using many 
samples that lie near each other and yields a 
better estimate of E(F(X)). 

Each distributed r a y  is n-dimensional in infor- 
mation content. Several of the dimensions include 
pixel area sampling, realistic light source 
sampling, and surface smoothness sampling for 
reflection and refraction. The ray definition is 
implicit instead of explicit, however. Instead of 
carrying an n-dimensional ray through the ray 
tracer, an ordinary 3-space ray is used along with 
the implicit n-dimensional information for calcu- 
lating an n-dimensional ray from an ordinary 
3-dimensional ray. The ray is extended to higher 
dimensions by perturbing the ray using the implicit 
information in the proper fashion. For anti- 
aliasing, generate an artificial two-dimensional 
axis system in the window containing the pixel. 
Draw a sample from the appropriate distribution for 
anti-aliasing. Use the samples as offsets from the 
origin along each axis and make this point the new 
endpoint of the ray. The new ray has been extended 
to sample from the proper distribution for anti- 
allaslng. For modeling realistic light sources, 
first project the light source onto the plane 
perpendicular to a ray arriving at the center of 
the light source. Sample the distribution of the 
light source in the plane. The value of this 
random variable specifies the endpoint of the 
sample ray. Variable surface smoothness can be 
sampled by perturbing each reflected and refracted 
ray by using the plane that is perpendicular to the 
end of the ray and sampling as above. After all 
perturbations have taken place, the ray now 
contains n-dimensional information and properly 
samples each dimension. 

Results 

Three figures are provided to demonstrate the 
quality of the results. In each figure, part (a) 
is the actual image computed. Part (b) is the 
two-dimensional histogram showing the number of 
samples used for the corresponding pixels of part 
(a). The histogram in part (c) shows the relative 
quantity of pixels for each number of samples used. 
All three images are sampled in the dimensions 
required to model solid light sources and variable 
degrees of surface smoothness and to perform 
spatial anti-aliasing. All three images use the 
shading model of Lee and Use[ton described in [13], 
and are done at a resolution of 512 by 512 pixels. 

Parameter settings for all three pictures are 
the same. Eight subregions are used for the stra- 
tified sampling and one new sample is chosen from 
each region when the need for additional samples is 
indicated. The value for ~ used is .05 and the 
value for T is 0.000105. The maximum variance, M, 
is 1/128, and the maximum number of samples, Z, is 
96. 

Figure 2(a) shows nine wedges lit from the 
right, casting shadows onto a checkered backdrop. 
The shadows show penumbras caused by the sampling 

of the light source. Figure 2(b) shows that large 
numbers of rays are used only when smaller numbers 
will not suffice. Notice that fewer rays are needed 
in the area of the blackest wedge because all the 
light is absorbed and the shade becomes constant. 
Figure 2(c) demonstrates two interesting facts: 
first that most pixels require only the minimum 
number of samples; and second that the high 
frequency of the checkerboard pattern does (as 
expected) cause a large number of pixels requiring 
the maximum number of samples. 

Three effects of this algorithm can be seen in 
Figure 3(a) especially well. The shadows cast by 
the metallic spheres have penumbras, showing the 
sampling in the light source dimension. The 
reflection of the checkered backdrop onto the table 
becomes less precise the further out from the back- 
drop it is, showing a less than perfectly smooth 
surface. The highlights on the two spheres have 
different areas and intensities, indicating a 
difference in polish between the two. Figure 3(b) 
shows the variation in the number Of samples per 
pixel required, especially in the reflection of the 
backdrop on the table. The lack of variation in 
the area of the backdrop is due to the extremely 
matte finish of the backdrop. Figure 3(c) shows 
that the larger squares and matte finish of the 
backdrop leads to a larger number of plxels 
requiring only the minimum number of samples. 

In figure 4(a) both the table and the backdrop 
are smoother than in figure 3(a) and the backdrop 
is more reflective. This is shown by the visi- 
bility of the reflection of the table on the back- 
drop and the visibility of the light source reflec- 
tion on the backdrop. The reflection of the 
backdrop on the table is slightly more precise. 
This difference can actually be seen more easily in 
figures 3(b) and 4(b) by comparing the smearing of 
the backdrop's edges in the reflection on the 
table. Note also the reflection of the shadow of 
the wine glass. 

Future work 

This technique of generating sample rays can 
easily be extended to additional dimensions to 
model effects such as motion blur and depth of 
field. Wavelength sampling for improved color 
modeling as well as wavelength dependent effects 
such as refraction can also be included. The 
difficulties in these extensions lie mainly in 
determining the appropriate distribution to sample 
for each dimension and computing the ray paths in 
higher dimensions. Computing the position of 
moving objects at arbitrary times, for example, 
will be required for motion blur. 

Additional work should consider the interaction 
between the number of rays per pixel, the number of 
pixels in the image and the size at which the image 
is to be displayed. It is intuitively expected 
that an increase in spatial resolution will 
decrease the average number of samples needed per 
pixel. This intuition is dependent on the assump- 
tion that the overall image size remains constant. 
The size of the pixel, in terms of the portion of 
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the field of view occupied, becomes a relevant 
parameter .  
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9 wedges 

Figure 3 

2 metallic spheres 

Figure 4 

wine glass and decanter 
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