
Computer Graphics Volume 18, Number 3 July 1984

B E A M T R A C I N G P O L Y G O N A L O B J E C T S

Paul S. Heckbert
Pat Hanrahan

Computer Graphics Laboratory
New York Institute of Technology

Old Westbury, NY 11568

Abstract

Ray tracing has produced some of the most realistic
computer generated pictures to date. They contain sur-
face texturing, local shading, shadows, reflections and
refractions. The major disadvantage of ray tracing
results from its point-sampling approach. Because calcu-
lation proceeds ab initio at each pixel it is very CPU
intensive and may contain noticeable aliasing artifacts. It
is difficult to take advantage of spatial coherence because
the shapes of reflections and refractions from curved sur-
faces are so complex.

In this paper we describe an algorithm that utilizes
the spatial coherence of polygonal environments by com-
bining features of both image and object space hidden
surface algorithms. Instead of tracing infinitesimally thin
rays of light, we sweep areas through a scene to form
"beams." This technique works particularly well for
polygonal models since for this case the reflections are
linear transformations, and refractions are often approxi-
mately so.

The recursive beam tracer begins by sweeping the
projection plane through the scene. Beam-surface inter-
sections are computed using two-dimensional polygonal
set operations and an occlusion algorithm similar to the
Weiler-Atherton hidden surface algorithm. For each
beam-polygon intersection the beam is fragmented and
new beams created for the reflected and transmitted
swaths of light. These sub-beams are redirected with a
4x4 matrix transformation and recursively traced. This
beam tree is an object space representation of the entire
picture.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0119 $00.75

Since the priority of polygons is pre-determined, the
final picture with reflections, refractions, shadows, and
hidden surface removal is easily drawn. The coherence
information enables very fast scan conversion and high
resolution output. Image space edge and texture
antialiasing methods can be applied.

CR Categories: 1.3.3 [Computer Graphics]:
Picture/Image Generation - display algorithms; 1.3.7
[Computer Graphics] : Three-Dimensional Graphics
and Realism - visible line/surface algorithms.

General Terms: algorithms.

Additional Key Words and Phrases: ray tracing, refrac-
tion, polygon, object space, coherence.

1. Introduction
Two of the most popular methods used to create

frame buffer images of three-dimensional environments
are ray tracing and scan line algorithms. Ray tracing
generates a picture by casting a ray of light from the eye
point through each pixel of the image and into the scene.
Visible surfaces are determined by testing for line-surface
intersections between the ray and each object in the
scene. By recursively tracing reflected and refracted rays,
considerable realism can be added to the final image. In
contrast, a scan line rendering program generally takes
advantage of coherence to draw surfaces incrementally.
Comparing the two approaches we find:

Advantages of ray trace:
Uses a global lighting model that calculates

reflections, refractions, shadows.
Can handle a variety of geometric primitives.

Disadvantages of ray trace:
Often slow since the intersection calculations

are floating point intensive.
Point sampling the environment causes aliasing.

Advantages of scan line algorithms:
Incremental calculation of geometry

is very efficient.
Disadvantages of scan line:

Local lighting model not as realistic.

119

@SIGGRAPH'84

Scan conversion of polygons is particularly popular, espe-
cially in computer animation, where many images must
be produced and image generation time must be kept to a
minimum [Crow, 1978]. Ray tracing has generated some
very realistic still images, but generally has been imprac-
tical for animation. The only extensive ray traced anima-
tion made to date was done with the aid of
special-purpose hardware [Kawaguchi, 1983; Nishimura
et. al., 1983].

The differences between many hidden surface algo-
rithms depends on the techniques used to exploit coher-
ence in the scene. Most at tempts at exploiting coherence
in ray tracing have concentrated on techniques to limit
the number of ray-surface intersections that are to be
tested. This can be done by hierarchically decomposing
the scene into a tree of enclosing volumes [Clark 1976;
Rubin and Whitted, 1980; Dadoun, Kirkpatrick and
Walsh, 1982]. The ray-surface intersection calculation
proceeds by testing the outermost enclosing volume first
and searches the subvolumes only if the ray pierces that
volume. Another approach is to form a cellular decompo-
sition of the scene, keeping track of which surfaces are
within or border a given cell. If the ray is assumed to be
in a particular cell then only the surfaces inside that cell
need be tested for intersections [see for example Jones,
1971]. If no intersections are found the ray passes
through that cell, enters a neighboring cell and the search
continues. Another technique, applicable if rays are only
traced to one level, is to enclose each surface with a
bounding box in image space [Roth, 1982]. As the image
is scanned, surfaces become active or inactive depending
on whether the current raster location is within the
surface's bounding box.

A different type of coherence results from the obser-
vation that in many scenes, groups of rays follow virtu-
ally the same path from the eye to the light source and
thus can be bundled into coherent beams of light (see
Figure 1) [Hanrahan and Heckbert, 1984]. This observa-
tion can be exploited by at tempting to trace a beam of

Figure 1. A bundle of rays passing through
two spheres.

rays in parallel rather than an individual ray. Exploiting
this coherence is advantageous since it reduces the
number of intersection. Also, once such coherence is
identified it allows incremental techniques to be used for
drawing a homogeneous region (a region over which the
ray tree is constant). This would increase the speed of
the rendering algorithm, especially at high resolutions.
Finally, it is just this lack of coherence which causes
many of the aliasing artifacts in ray traced images. It is
possible to use the coherence to antialias textures and
shading calculations within a homogeneous region and
potentially, by identifying the boundaries between
regions, to antialias their edges.

We propose an algorithm for tracing beams through
scenes described by planar polygonal models. Beam trac-
ing polygons is much simpler because of the large body of
knowledge regarding both object space hidden surface
calculations and image space display algorithms. Also,
unlike the general case of a beam reflecting from a curved
surface, beams formed at planar boundaries can be
approximated by pyramidal cones. The algorithm we
describe is similar in principle to a technique developed
by Dadoun, Kirkpatrick and Walsh [1982] to trace sound
beams from audio sources to a receiver. They noted that
this problem is equivalent to the hidden surface problem
and proposed computationally efficient algorithms for
performing rapid hidden surface removal in static scenes.
Our algorithm differs in that it is patterned closely after
the classic ray trace and creates output that can directly
drive image space rendering programs.

2. Beam Tracing
The beam tracer is a recursive polygon hidden sur-

face algorithm. The hidden surface algorithm is designed
to find all visible polygons within an arbitrary two
dimensional region. The procedure begins with the view-
ing pyramid as the initial beam. The beam tracer builds
an intermediate data structure, the beam tree, which is
very similar to the ray tree [Whitted, 1980[. Like the ray
tree whose links represent rays of light and whose nodes
represent the surfaces those rays intersect, the beam tree
has links which represent cones of light and nodes which
represent the surfaces intersected by those cones. But
unlike a link in a ray tree which always terminates on a
single surface, the beam link may intersect many sur-
faces. Each node under the beam represents a visible sur-
face element as seen along the beam axis. This is illus-
trated abstractly in figure 2 and a simple example is
shown in figure 3. The beam tree is computed in object
space and then passed to a polygon renderer for scan
conversion to form the final shaded image.

2.1. Object Space Beam Tracing
The beam tree could be formed using any of several

object space hidden surface algorithms. The pictures
generated for this paper used an algorithm modeled along
the lines of the classic ray tracing program. We now out-
line the procedure:

120

Computer Graphics Volume 18, Number 3 July 1984

Incident beam

 am-surfaee [
intersection list ~ ' ' ']

R i ~ I "~¢ Refracted beam

/ \
Figure 2. A schematic representation of the
beam tree. Notice that the incident beam is
fragmented into several pieces each of which
may give rise to a reflected and refracted
beam.

function Beam-Trace(Beam : Polygon; Ctm : Matrix) : PolygonList;
begin

{Transform scene into the beam coordinate system
using the current transformation matrix (Ctm)}

{Priority sort all polygons in the scene (ScenePolygonList)}
For each Polygon in the ScenePolygonList do begin

P = Intersect ion(Beam, Polygon);
if P ~ nil then begin

if RecurseFurthur(Depth, P, ...) then begin
if reflective(Polygon) then begin

NewCtm = Ctm * ReflectlonMatrlx(Polygon);
P.ReflectiveTrce = Beam-Trace(P, NewCtm);

end
if refractive(Polygon) then begin

NcwCtm ~ Ctm * Refract lonMatr lx(Polygon);
P.RefractiveTree ~ Beam-Trace (P, NcwCtm);

end
end
{Add P to the Beam polygon intersection list (FragmentList)}
Beam ~ Difference(Beam, Polygon);

end
Beam-Trace ~ FragmentList;

end

Most ray tracers perform all their calculations in the
world coordinate system. The beam tracer performs all
calculations in a transformed coordinate system, initially
the viewing coordinate system, called the beam coordi-
nate system. In the beam coordinate system, beams are
defined as the volume swept out as a two-dimensional
polygon in the x-y plane is translated along the z-axis.
Since the transformation into world space may contain
perspective, the most general beam is a polygonal cone in
world space. In a ray tracer, the ray is redirected after a
reflection or refraction whereas in the beam tracer the
scene is transformed into the beam coordinate system.

Figure 3. A beam tree corresponding to a cube
on a mirrored surface. The bold lines indicate
the beam fragments at that level in the tree.

This technique is analogous to forming the virtual image
of an optical system.

The closest beam-surface intersection is determined
by searching a depth-sorted list of polygons using two
dimensional set operators. The depth ordered list is
formed by priority sorting the polygons [Newell, Newell,
and Sancha, 1972]. In our implementation, intersecting
polygons and cyclic dependencies are not allowed
although this is not a theoretical limitation of the
approach. Such sorting is not required during a ray trace
but is characteristic of object space hidden surface algo-
rithms [Sutherland, Sproull, and Schumacker, 1974] and
implies that the worst case running time could be O(n2),
which is worse than a ray trace which is O(n). Since we
must depth-sort the polygons after every beam intersec-
tion, algorithms that preprocess the scene so that priority
ordering can be quickly determined from any viewpoint
could be used here [Sutherland, Sproull, and Schumacker,
1972; Fuchs, Kedem, and Naylor, 1980].

To find the first visible polygon, we intersect the
beam with the first polygon in the list. If the result is nil
then the polygon is outside the beam, otherwise it is visi-
ble and is added to the list of visible surface elements
within this beam. To ensure that no other polygon is
classified as visible within the area of this visible polygon,
we subtract it from the beam before continuing through
the depth ordered list. The set operators used in this
algorithm must be able to handle concave polygons con-
taining holes. Different methods for performing polygonal
spatial set operations (union, intersection, and difference)
are discussed in [Eastman and Yessios, 1972; Weiler and
Atherton, 1977].

To simulate reflection and refraction we call the
beam tracer recursively by generating new beams whose
cross-sections are the intersection polygon. The transfor-
mations for reflection and refraction are discussed further
in the next section and the appendix.

121

@SIGGRAPH'84

Recursion of the beam tracer can be terminated by
several criteria:

(1) Maximum tree depth: 5 levels is common.

(2) Threshold of insignificance: determine if the intensity
contributed by this branch of the tree will make a
perceptible difference (called "adaptive tree depth
control" in [Hall and Greenberg, 1983]).

(3) Polygon size: terminate when polygon area is below
some threshold, such as one pixel.

2.2. Reflection and Refraction Transformations

Reflection in a plane, which maps each point to its
mirror image, is a linear transformation, and can be
represented by a 4x4 homogeneous matrix. Refraction by
a plane, however, is not a linear transformation in gen-
eral. Figures 4 and 5, which were made with a standard
ray tracer, show the distortion of an underwater checker-
board viewed from above, and an above-water checker-
board viewed from underwater, respectively. The second
shows the effect of the critical angle which occurs when a
ray is refracted from the denser material into the sparser
one. Rays incident at the critical angle are refracted
parallel to the surface (toward the horizon in our "fish-
eye" view). Outside the circle, when the incident angle is
greater than the critical angle, there is no refraction, and
one has total internal reflection. (Humans do not see this
phenomenon when swimming because our eyes are not
adapted to focus underwater [Walker, 1984]).

Since refraction bends lines, it cannot always be
expressed as a linear transformation. There are two
situations under which it is linear, however. For ortho-
graphic projections the incident angle is constant, and
refraction is equivalent to a skew or shear. The other
situation is for rays at near-perpendicular incidence,
known as parazial rays in geometrical optics. The latter
corresponds to the centers of figures 4 and 5, where lines
are approximately linear. Derivations of the matrix for-
mulas for these transformations are given in the

appendix.

Since beam tracing, as outlined here, is limited to
linear transformations, we must choose one of these
approximations in order to simulate refraction. The
consequences are that beam traced perspective pictures
exhibiting refraction will not be optically correct. There
will be no critical angle, and lines will never become bent.
Beam traced approximations to figures 4 and 5 would
look like normal checkerboards. The error of the approx-
imation is highest for refraction from dense materials to
sparse ones, but fortunately for beam tracing, humans are
normally on the sparser side (e.g. in air, looking into
water). This explains why refraction's curvature of lines
is not widely known.

2.3. Image Space Rendering

Associated with each screen-space polygon is the tree
of face fragments which are projected onto that polygon
by the reflection and refraction transformations. Final
intensities can be computed by scan converting all of the
faces covering a given area in parallel, and applying the
recursive intensity formula

I = c j , f+cj ,+e, lr+ctI t

to the tree of faces. This blends the diffuse, specular,
reflected, and transmitted intensities according to the
coefficients cd, c,, cr, and c t to compute a color for each
pixel.

Faceted or Gouraud shading of beam traced scenes
can be done using a modified painter's algorithm. This
was the technique used to produce the beam traced pic-
tures in this paper (figures 6-9). Polygons are drawn into
a frame buffer one-by-one as the beam tree is traversed.
For each face or vertex, the diffuse and specular intensi-
ties I d and I s are computed using the Phong lighting
model [Newman and Sproull, 1979]. Since the polygons
in the fragment lists of the beam tree are defined in the
beam coordinate system, they must be transformed back

Figure 4. View of an underwater checkerboard
from air.

Figure 5. View of an above-water checker-
board from underwater.

122

Computer Graphics Volume 18, Number 3 July 1984

Figure 6. A diffusely shaded cube resting on a
mirror.

Figure 8. A reflective cube in the interior of a
texture mapped, reflective cube.

Figure 7. A translucent dodecahedra within a
cube of mirrors.

to "world space" for all shading calculations; shading
should not be done in a virtual or perspective space. If
the coefficients Q, c,, cr, et, and the material tran-
sparency are constant over each polygon, rendering can
be done by simply adding the intensities into a frame
buffer as each polygon is drawn. Since addition is com-
mutative, the beam tree can be traversed in any order.
This method requires a fairly robust polygon tiler, since
the polygons are potentially concave with holes, and a
single-pixel gap or overlap between polygons will result in
an edge which is too dark or too light [Heckbert, 1983].
If the polygon tiler is limited to convex polygons, concavi-
ties and holes can be eliminated by polygon subdivision.
Note that the pixel to pixel coherence allows antialiased
texture mapping (figure 13).

Figure 9. An example of post-processing a
beam tree to simulate an Omnimax projection
system.

3. Discuss ion

A useful measure of any ray traced image is average
ray tree size. This statistic is similar to the notion of
depth complexity used in analyzing polygon display algo-
rithms. With the beam tree'this is easily calculated since

average ray tree size

total area (in screen space) of the beam tree polygons
screen area

The total time spent ray tracing an image is equal to the
average ray tree size, multiplied by the time needed to
determine the nearest ray-polygon intersection, times the
resolution of the image. In contrast, the beam tracer is
resolution independent and therefore the relative
efficiency of beam tracing versus ray tracing increases
linearly with resolution.

123

OSIGGRAPH'84

Beam tracing, however, is more complicated then ray
tracing and may not always be worth the extra expense.
The expected improvement depends more on the intrinsic
coherence of the imaged scene rather than resolution. We
can define coherence as

c o h e r e n c e -~ average r a y t ree s i ze
total beam tree s ize

This measure indicates to what degree the beam is
fragmented-the more it is fragmented the lower the
scene's coherence. If the coherence is very high then
many rays are being traced in parallel and therefore a
beam tracer will be faster than a ray tracer. In summary,
beam tracing is most efficient when there are large homo-
geneous regions in the picture.

Figures 6 and 7 took 30 seconds and 5 minutes,
respectively, to generate. We estimate a standard ray
tracer would take 20-100 times longer.

One nice feature of the beam tracer is that it gen-
erates a reasonably compact object space representation
of the image. Because it produces object space coordi-
nates, precise line drawings like figure 3 can be made.
These are difficult to make with a ray tracer [Roth, 1982].
The intermediate representation can also be further mani-
pulated. For example, the same tree can be rendered at
different resolutions or a series of images can be produced
which differ in their coloring and lighting parameters.
Since the output of the beam tracer is in object space,
fisheye projections such as Omnimax can be made by
beam tracing in perspective with a very wide camera
angle and distorting the result (figure 9). Methods for
mapping and subdividing lines for the Omnimax projec-
tion are given in [Max, 1983].

There are, however, some rather severe limitations to
the technique as we've developed it here. We exploit
coherence by assuming that reflections and refractions
form virtual images within a polygonal window and that
these virtual images can be formed by linear transforma-
tions. As we've shown, refraction under perspective is
not a linear transformation thus the pictures are not phy-
sically correct. In practice it is very difficult for "non-
experts" to detect the discrepancy in the pictures we've
generated. This linearity assumption is also not correct
for curved surfaces since their normals vary from point to
point.

We now discuss several possibilities for future exten-
sions of beam tracing.

3.1. Light Beam Tracing
In standard ray tracing, diffuse shading of surface

points is done by aiming rays toward each point light
source and determining if any objects are blocking the
path of direct illumination. Blocked lights create sha-
dows; unblocked lights contribute to the reflected inten-
sity using Lambert 's law. Since rays are aimed only at
the lights, and not in all directions, this does not realisti-
cally model indirect illumination. It is also intellectually
unappealing because it creates an asymmetry between the
light source and the eye point, contrary to the laws of
physics.

Diffuse shading and shadows for a beam-traced
model can be computed as a pre~process to the polygon
database. We propose a recursive extension of the
Atherton-Weiler shadow algorithm [1978]. Beams are
traced from each light source just as they are from the
viewpoint ("light beam" tracing as opposed to "eye
beam" tracing). The first order intersections are the
directly illuminated surfaces, (not shadowed) and higher
order intersections are illuminated surfaces resulting from
the reflected and refracted light sources, an effect difficult
to achieve with a standard ray tracer. The illuminated
polygons thus formed can be built into the model data-
base as "surface detail", that is, polygons which do not
affect the shape of the objects, but only their shading. If
the light sources are infinitely distant, each face will have
a constant diffuse intensity, which can be compactly
saved in the database on this pre-process pass, for use
during the rendering pass.

This algorithm has several other advantages over
diffuse shading during rendering. Light sources can be
directional and have a polygonal cross-section. They
need not be point sources. The depth of the eye beam
tree can also be reduced, since light beam tracing pro-
pagates shading information through several bounces (one
could say that the light beams meet the eye beams half-
way). Finally, if the model and lights are stationary dur-
ing an animation, light beam pre-processing need be done
only once.

3.2. Antlallaslng
In classical ray tracing, antialiasing is usually done

by adaptive subdivision of pixels near large intensity
changes or small objects [Whitted, 1980; Roth, 1982].
The method at tempts to use heuristic criteria to probe
the image frequently enough that small details will not be
overlooked. Depending on the criteria, it will sometimes
subdivide too little, resulting in aliasing, or too much, in
which case processing time is wasted.

Before rendering, it is possible to subdivide the beam
tree into non-overlapping polygonal regions and form an
adjacency graph which indicates which regions are neigh-
bors. Given this information, antialiasing edges is
straightforward. Since the beam tracer resolves all
hidden-surface questions, all that is needed is a polygon
scan converter with a pixel integrator. Pixel integration
can be done by sub-sampling or with analytic methods
[Catmull, 1978]. This same information might be useful
when light beam tracing. The symmetry between eye
and light allows us to relate partially-covered pixels to
partially-obscured lights: the former suggests antialiasing,
the latter suggests soft shadows. Consequently, if a
region adjacency graph is made during light beam trac-
ing, this can assist in the creation of soft-edged shadows.

3.3. Rendering Options
There are many other interesting variations to

rendering the beam tree. If, as mentioned in the previous
section, the output is divided into non-overlapping
regions and we are doing faceted shading, the recursive
shading formula can be calculated once for the entire
region and a single polygon rendered. At the other
extreme, it might be worth modifying the polygon

124

Computer Graphics Volume 18, Number 3 July 1984

renderer so that it simultaneously tiles all the polygons in
a region. This would allow the simulation of light scatter-
ing through translucent materials, since in this case the
intensity is an exponential function of material thickness
[Kay and Greenberg, 1979] which varies over the
polygons. As we've mentioned, because of the additive
nature of the shading formula, the polygons can be ren-
dered in any order but the overall intensity is modulated
depending on the shading coefficients and the depth in
the tree. If, on the other hand, we always render the
scene in back-to-front order, one can accommodate spa-
tially varying reflection and refraction coefficients. For
example, cut glass could be simulated by modulating
these parameters with a texture map. Finally, the coher-
ence in the beam tree often allows certain aspects of the
shading calculation to be done once per region which
allows a more complicated shading model to be used. For
example, we have used constant values for the four inten-
sity coefficients, but more realistic results could be
obtained using Fresnel's equations [Longhurst, 1967].

4. A c k n o w l e d g e m e n t s

We would like to thank to Kevin Hunter and Jules
Bloomenthal for proofreading and Jane Nisselson for
assistance with the writing.

5. Append ix : Ref lect ion and Refrac t ion Trans for -
m a t i o n s

We derive the homogeneous 4x4 matrix form for the
reflection and refraction transformations.

Figure 10 shows the geometry of an incident ray I hitting
a plane and generating a reflected ray R and refracted
(transmitted) ray T. The three rays and the surface nor-
mal N all lie in a plane. The index of refraction changes

% / ~*

%'. . ",
% " . . T ° .-" '°" - .X / v , /

surface plane ~ , , :.: "

-% "-%
\

\

Figure 10. Geometry of reflection and refrac-
tion in the plane of incidence.

from T/1 to ~2 at the boundary. The angle of incidence is
01 and the angle of refraction is 02 . We wish to find the
transformations which map the real reflected and
refracted points Pr and Pt to their virtual image P.

Notation:

I---- incident ray direction, [1[=1

N = (A B C O) T = normal to plane

IN[= ~/A2+B2+C e = 1

L = (A B C D) ---- coefficients of plane equation:

LP = A z + B y + C z + D ---- 0

P ---- (x y z 1) T = any point

The direction of the reflected ray is given by:

R = I - 2 (N . I) N = I+2dN (a unit vector)

where: d ~ c o s O l ~ - N ' l > 0

The reflected point can be found by noting that LP r gives
the distance of a point P , from the plane. The point for-
mula has a form similar to the direction formula:

P - - - - P, -2 (LP ,)N = P , - 2 N L P r = M ~ r

where M r is the homogeneous 4x4 matrix for the
reflection transformation:

1-2A 2 - 2 A B -2A C -2AD I

I - 2 A B 1-2/fl - 2 B C -2BD
M, = I - 2 N L ~ - 2 A C - 2 B C 1-2C ~ -2 CDI

o o o 1 '

and I is a 4x4 identity matrix.

Shell's law relates the incident and refracted angles:

~hsinO 1 ~ ~2sin02

The direction of the refracted ray is:

T = ~I-(c-qd)N (a unit vector)

where: q = q l / r] 2 = relative indez of refraction

and ¢ = cosO 2 = x/1-~/2(1-d 2)

There is no refracted ray (total internal reflection) if
1-~/2(1-d 2) < 0. Our formula for T is equivalent to, but
simpler than, the one in [Whitted, 1980].

For orthographic projections, the incident direction I is
independent of object position, and refraction is a skew
transformation parallel to the plane which maps a point
Pt as follows:

p ~__ - pt+(tanOl-tanO2))QLp t

where: M = N × (I × N) = I-(N'I)N= l+dN,
M - - - - vector tangent to plane, [M[~ sinO l

and P = MtPt, where M t is a 4x4 matrix:

M t ---- I + a (l + d N) L

tanOl-tan02 1
where: c~ = ---- secOvt/secO 2

sinO l d e

If viewing along the Z axis, then I = (0 0 I 0) T, d =
-C, and

125

~SIGGRAPH'84

l - c A 2 C -c~ABC -c~A C 2 -c~ACD I

I -t~A.BC 1-aB2 C - a B C 2 -aBCD

M, = aA(1--C e) aB(1-C e) l + a q l - C e) aD(1-Ce)l

0 O 0 l

This formula is exact for orthographic projections. If the
eye is local, however, I and d vary from point to point on
the surface, and there is no linear transformation from Pt
to P.

Observing figure 11, however, we see that rays with small
incidence angles (paraxial rays) produce virtual refracted
rays which nearly come to a focus. Thus, for paraxial
rays,

D 1 tan02 tan~ 2
- - ~- - - = - - ~-- constant
D 2 tan01 tan¢ 1

If we take the constant to be rll/r/2, then

qltan01 = ~/2tan02

We call this the tangent law. For paraxial rays,
sin0 ~ tan0 ~ 0, so Shell's law is in agreement with t h e
tangent law. A graphical comparison of the two laws is
shown in figure 12.

The virtual focus can be interpreted as follows: When
looking across a boundary with relative index of refrac-
tion ~/, objects appear to be at t/ times their actual dis-
tance [Feynman, 1963]. Recall that light travels slower in
denser materials by precisely this factor 7. Within the
paraxial approximation, then, refraction is equivalent to a
scaling transformation perpendicular to the plane:

P : Pt+(~I-1)(LPt)N : M t P t

\
x virtual focus

Figure 11. Refracted paraxial rays come to a
virtual focus in the first medium at a distance
D e = 1 D 1 from the plane. Left diagram illus-
t ra tesntangent law, right illustrates Snell's
law.

\

t

o*

tangent law: /
rhtan01 _~ t / 2 t a n 8 2 ~

~lSlnO 1 ~ ~ 2 s i n 0 2

O o

Figure 12. Refraction angle as a function of
incidence angle using Shell's law and tangent
law. For this graph, ~/2/r/1 = 1.33.

M, = I+XNL :

where: X : ~1-1

I+XA XAB XAC XAD]

XAB I+) ,B 2 XBC XBD I
XAC),BC l + k C e XCD I

0 o o 1 J

Note the similarity between this and the reflection for-
mula. Reflection is simply paraxial refraction with

---- -1.

6. References
Atherton, Peter K., Kevin Weiler, and Donald Greenberg,
"Polygon Shadow Generation." Computer Graphics (SIG-
GRAPH '78 Proceedings), vol. 12, no. 3, Aug. 1978, pp.
275-281.

Catmull, Edwin, "A Hidden-Surface Algorithm with
Anti-Aliasing." Computer Graphics (SIGGRAPH '78
Proceedings), vol. 12, no. 3, Aug. 1978, pp. 6-11.

Clark, James, "Hierarchical Geometric Models for Visible
Surface Algorithms." C.A.C.M. vol. 19, no. 10, 1976, pp.
547-554.

Crow, Franklin C., "Shaded Computer Graphics in the
Entertainment industry." Computer, vol. 11, no. 3,
March 1978, p. 11.

Dadoun, Norm, David G. Kirkpatrick, and John P.
Walsh, "Hierarchical Approaches to Hidden Surface Inter-
section Testing." Proceedings of Graphics Interface '82,
May 1982, pp. 49-56.

Eastman, C. M., and C. I. Yessios, "An Efficient Algo-
rithm for Finding the Union, Intersection and Differences
of Spatial Domains." Technical Report 31, Insti tute of

126

Computer Graphics Volume 18, Number 3 July 1984

Physical Planning, Carnegie-Mellon University, Sept.
1972.

Feynman, Richard P., Robert B. Leighton, and Matthew
Sands, The Feynman Lectures on Physics. Addison-
Wesley, Reading, Mass., 1963, vol. I, pp. 27-3, 27-4.

Fuchs, Henry, Zvi M. Kedem, and Bruce F. Naylor, "On
Visible Surface Generation by A Priori Tree Structures."
Computer Graphics (SIGGRAPH '80 Proceedings), vol.
14, no. 3, July 1980, pp. 124-133.

Hall, Roy A., and Donald P. Greenberg, "A Testbed for
Realistic Image Synthesis." IEEE Computer Graphics and
Applications, vol. 3, no. 8, Nov. 1983, pp. 10-20.

Hanrahan, Pat, and Paul S. Heckbert, "Introduction to
Beam Tracing." Proc. Intl. Conf. on Engineering and
Computer Graphics, Beijing, China, Aug. 1984.

Heckbert, Paul, PMAT and POLY User's Manual. New
York Inst. of Tech. internal document, Feb. 1983.

Jones, C. B., "A New Approach to the 'Hidden Line'
Problem." The Computer Journal, vol. 14, no. 3, Aug.
1971, pp. 232-237.

Kawaguchi, Yoichiro, "Growth: Mysterious Galaxy."
SIGGRAPH '83 Film ~ Video Shows, p. 5.

Kay, Douglas S., and Donald Greenberg, "Transparency
for Computer Synthesized Images." Computer Graphics
(SIGGRAPH '79 Proceedings), vol. 13, no. 2, Aug. 1979,
pp. 158-164.

Longhurst, R. S., Geometrical and Physical Optics.
Longman, London, 1967.

Max, Nelson, "Computer Graphics Distortion for IMAX
and OMNIMAX Projection." Nicograph '83 Proceedings,
Dec. 1983, pp. 137-159.

Newell, M. E., R. G. Newell, and T. L. Sancha, "A New
Approach to the Shaded Picture Problem." Proc. ACM
Nat. Conf., 1972, p. 443.

Newman, William M., and Robert F. Sproull, Principles
of Interactive Computer Graphics, end ed. McGraw-Hill,
New York, 1979.

Nishimura, Hitoshi, Hiroshi Ohno, Toru Kawata, Isao
Shirakawa, and Koichi Omura, "Links-l: A Parallel Pipe-
lined Multimicrocomputer System for Image Creation."
IEEE 1983 Conf. Proc. of the lOth Annual Intl. Syrup. on
Computer Architecture.

Roth, Scott D., "Ray Casting for Modeling Solids." Com-
puter Graphics and Image Processing, vol. 18, no. 2, Feb.
1982, pp. 109-144.

Rubin, S.W., and Turner Whitted, "A &dimensional
Representation for Fast Rendering of Complex Scenes."
Computer Graphics (SIGGRAPH '80 Proceedings), vol.
14, no. 3, July 1980, pp. 110-116.

Sutherland, Ivan E., Robert F. Sproull,. and Robert A.
Schumacker, "A Characterization of Ten Hidden-Surface
Algorithms." Computing Surveys, vol. 6, no. 1, March
1974, p. 1.

Walker, Jearl, "The Amateur Scientist: What is a fish's
view of a fisherman and the fly he has cast on the
water?" Scientific American, vol. 250, no. 3, March 1984,
pp. 138-143.

Walsh, John P., and Norm Dadoun, "What Are We
Waiting for? The Development of Godot, II." presented
at the 103rd meeting of the Acoustical Society of Amer-
ica, Chicago, April 1982.

Weiler, Kevin, and Peter Atherton, "Hidden Surface
Removal Using Polygon Area Sorting." Computer Graph-
ics (SIGGRAPH '77 Proceedings), vol. 11, no. 2, Summer
1977, pp. 214-222.

Whitted, Turner, "An Improved Illumination Model for
Shaded Display." C.A.C.M. vol. 23, no. 6, June 1980,
pp. 343-3~19.

127

