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Abstract 

Ray tracing has produced some of the most realistic 
computer generated pictures to date. They contain sur- 
face texturing, local shading, shadows, reflections and 
refractions. The major disadvantage of ray tracing 
results from its point-sampling approach. Because calcu- 
lation proceeds ab initio at each pixel it is very CPU 
intensive and may contain noticeable aliasing artifacts. It 
is difficult to take advantage of spatial coherence because 
the shapes of reflections and refractions from curved sur- 
faces are so complex. 

In this paper we describe an algorithm that utilizes 
the spatial coherence of polygonal environments by com- 
bining features of both image and object space hidden 
surface algorithms. Instead of tracing infinitesimally thin 
rays of light, we sweep areas through a scene to form 
"beams." This technique works particularly well for 
polygonal models since for this case the reflections are 
linear transformations, and refractions are often approxi- 
mately so. 

The recursive beam tracer begins by sweeping the 
projection plane through the scene. Beam-surface inter- 
sections are computed using two-dimensional polygonal 
set operations and an occlusion algorithm similar to the 
Weiler-Atherton hidden surface algorithm. For each 
beam-polygon intersection the beam is fragmented and 
new beams created for the reflected and transmitted 
swaths of light. These sub-beams are redirected with a 
4x4 matrix transformation and recursively traced. This 
beam tree is an object space representation of the entire 
picture. 
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Since the priority of polygons is pre-determined, the 
final picture with reflections, refractions, shadows, and 
hidden surface removal is easily drawn. The coherence 
information enables very fast scan conversion and high 
resolution output. Image space edge and texture 
antialiasing methods can be applied. 

CR Categories: 1.3.3 [Computer Graphics]: 
Picture/Image Generation - display algorithms; 1.3.7 
[Computer Graphics] :  Three-Dimensional Graphics 
and Realism - visible line/surface algorithms. 

General Terms: algorithms. 

Additional Key Words and Phrases: ray tracing, refrac- 
tion, polygon, object space, coherence. 

1. Introduction 
Two of the most popular methods used to create 

frame buffer images of three-dimensional environments 
are ray tracing and scan line algorithms. Ray tracing 
generates a picture by casting a ray of light from the eye 
point through each pixel of the image and into the scene. 
Visible surfaces are determined by testing for line-surface 
intersections between the ray and each object in the 
scene. By recursively tracing reflected and refracted rays, 
considerable realism can be added to the final image. In 
contrast, a scan line rendering program generally takes 
advantage of coherence to draw surfaces incrementally. 
Comparing the two approaches we find: 

Advantages of ray trace: 
Uses a global lighting model that calculates 

reflections, refractions, shadows. 
Can handle a variety of geometric primitives. 

Disadvantages of ray trace: 
Often slow since the intersection calculations 

are floating point intensive. 
Point sampling the environment causes aliasing. 

Advantages of scan line algorithms: 
Incremental calculation of geometry 

is very efficient. 
Disadvantages of scan line: 

Local lighting model not as realistic. 
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Scan conversion of polygons is particularly popular, espe- 
cially in computer animation, where many images must 
be produced and image generation time must be kept to a 
minimum [Crow, 1978]. Ray tracing has generated some 
very realistic still images, but generally has been imprac- 
tical for animation. The only extensive ray traced anima- 
tion made to date was done with the aid of 
special-purpose hardware [Kawaguchi, 1983; Nishimura 
et. al., 1983]. 

The differences between many hidden surface algo- 
rithms depends on the techniques used to exploit coher- 
ence in the scene. Most at tempts at exploiting coherence 
in ray tracing have concentrated on techniques to limit 
the number of ray-surface intersections that  are to be 
tested. This can be done by hierarchically decomposing 
the scene into a tree of enclosing volumes [Clark 1976; 
Rubin and Whitted,  1980; Dadoun, Kirkpatrick and 
Walsh, 1982]. The ray-surface intersection calculation 
proceeds by testing the outermost enclosing volume first 
and searches the subvolumes only if the ray pierces that 
volume. Another approach is to form a cellular decompo- 
sition of the scene, keeping track of which surfaces are 
within or border a given cell. If the ray is assumed to be 
in a particular cell then only the surfaces inside that  cell 
need be tested for intersections [see for example Jones, 
1971]. If no intersections are found the ray passes 
through that  cell, enters a neighboring cell and the search 
continues. Another technique, applicable if rays are only 
traced to one level, is to enclose each surface with a 
bounding box in image space [Roth, 1982]. As the image 
is scanned, surfaces become active or inactive depending 
on whether the current raster location is within the 
surface's bounding box. 

A different type of coherence results from the obser- 
vation that  in many scenes, groups of rays follow virtu- 
ally the same path from the eye to the light source and 
thus can be bundled into coherent beams of light (see 
Figure 1) [Hanrahan and Heckbert, 1984]. This observa- 
tion can be exploited by at tempting to trace a beam of 

Figure 1. A bundle of rays passing through 
two spheres. 

rays in parallel rather than an individual ray. Exploiting 
this coherence is advantageous since it reduces the 
number of intersection. Also, once such coherence is 
identified it allows incremental techniques to be used for 
drawing a homogeneous region (a region over which the 
ray tree is constant). This would increase the speed of 
the rendering algorithm, especially at high resolutions. 
Finally, it is just this lack of coherence which causes 
many of the aliasing artifacts in ray traced images. It is 
possible to use the coherence to antialias textures and 
shading calculations within a homogeneous region and 
potentially, by identifying the boundaries between 
regions, to antialias their edges. 

We propose an algorithm for tracing beams through 
scenes described by planar polygonal models. Beam trac- 
ing polygons is much simpler because of the large body of 
knowledge regarding both object space hidden surface 
calculations and image space display algorithms. Also, 
unlike the general case of a beam reflecting from a curved 
surface, beams formed at planar boundaries can be 
approximated by pyramidal cones. The algorithm we 
describe is similar in principle to a technique developed 
by Dadoun, Kirkpatrick and Walsh [1982] to trace sound 
beams from audio sources to a receiver. They noted that  
this problem is equivalent to the hidden surface problem 
and proposed computationally efficient algorithms for 
performing rapid hidden surface removal in static scenes. 
Our algorithm differs in that  it is patterned closely after 
the classic ray trace and creates output that  can directly 
drive image space rendering programs. 

2. Beam Tracing 
The beam tracer is a recursive polygon hidden sur- 

face algorithm. The hidden surface algorithm is designed 
to find all visible polygons within an arbitrary two 
dimensional region. The procedure begins with the view- 
ing pyramid as the initial beam. The beam tracer builds 
an intermediate data  structure, the beam tree, which is 
very similar to the ray tree [Whitted, 1980[. Like the ray 
tree whose links represent rays of light and whose nodes 
represent the surfaces those rays intersect, the beam tree 
has links which represent cones of light and nodes which 
represent the surfaces intersected by those cones. But 
unlike a link in a ray tree which always terminates on a 
single surface, the beam link may intersect many sur- 
faces. Each node under the beam represents a visible sur- 
face element as seen along the beam axis. This is illus- 
trated abstractly in figure 2 and a simple example is 
shown in figure 3. The beam tree is computed in object 
space and then passed to a polygon renderer for scan 
conversion to form the final shaded image. 

2.1. Object Space Beam Tracing 
The beam tree could be formed using any of several 

object space hidden surface algorithms. The pictures 
generated for this paper used an algorithm modeled along 
the lines of the classic ray tracing program. We now out- 
line the procedure: 
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Incident beam 

 am-surfaee [ 
intersection list ~ ' ' ' ] 

R i ~  I "~¢ Refracted beam 

/ \ 
Figure 2. A schematic representation of the 
beam tree. Notice that the incident beam is 
fragmented into several pieces each of which 
may give rise to a reflected and refracted 
beam. 

function Beam-Trace( Beam : Polygon; Ctm : Matrix ) : PolygonList; 
begin 

{Transform scene into the beam coordinate system 
using the current transformation matrix (Ctm)} 

{Priority sort all polygons in the scene (ScenePolygonList)} 
For each Polygon in the ScenePolygonList do begin 

P = Intersect ion(  Beam, Polygon ); 
if P ~ nil then begin 

if RecurseFurthur(  Depth, P, ... ) then begin 
if reflective(Polygon) then begin 

NewCtm = Ctm * ReflectlonMatrlx( Polygon ); 
P.ReflectiveTrce = Beam-Trace( P, NewCtm ); 

end 
if refractive(Polygon) then begin 

NcwCtm ~ Ctm * Refract lonMatr lx(  Polygon ); 
P.RefractiveTree ~ Beam-Trace (  P, NcwCtm ); 

end 
end 
{Add P to the Beam polygon intersection list (FragmentList)} 
Beam ~ Difference( Beam, Polygon ); 

end 
Beam-Trace ~ FragmentList; 

end 

Most ray tracers perform all their calculations in the 
world coordinate system. The beam tracer performs all 
calculations in a transformed coordinate system, initially 
the viewing coordinate system, called the beam coordi- 
nate system. In the beam coordinate system, beams are 
defined as the volume swept out as a two-dimensional 
polygon in the x-y plane is translated along the z-axis. 
Since the transformation into world space may contain 
perspective, the most general beam is a polygonal cone in 
world space. In a ray tracer, the ray is redirected after a 
reflection or refraction whereas in the beam tracer the 
scene is transformed into the beam coordinate system. 

Figure 3. A beam tree corresponding to a cube 
on a mirrored surface. The bold lines indicate 
the beam fragments at that level in the tree. 

This technique is analogous to forming the virtual image 
of an optical system. 

The closest beam-surface intersection is determined 
by searching a depth-sorted list of polygons using two 
dimensional set operators. The depth ordered list is 
formed by priority sorting the polygons [Newell, Newell, 
and Sancha, 1972]. In our implementation, intersecting 
polygons and cyclic dependencies are not allowed 
although this is not a theoretical limitation of the 
approach. Such sorting is not required during a ray trace 
but is characteristic of object space hidden surface algo- 
rithms [Sutherland, Sproull, and Schumacker, 1974] and 
implies that the worst case running time could be O(n2), 
which is worse than a ray trace which is O(n). Since we 
must depth-sort the polygons after every beam intersec- 
tion, algorithms that preprocess the scene so that priority 
ordering can be quickly determined from any viewpoint 
could be used here [Sutherland, Sproull, and Schumacker, 
1972; Fuchs, Kedem, and Naylor, 1980]. 

To find the first visible polygon, we intersect the 
beam with the first polygon in the list. If the result is nil 
then the polygon is outside the beam, otherwise it is visi- 
ble and is added to the list of visible surface elements 
within this beam. To ensure that no other polygon is 
classified as visible within the area of this visible polygon, 
we subtract it from the beam before continuing through 
the depth ordered list. The set operators used in this 
algorithm must be able to handle concave polygons con- 
taining holes. Different methods for performing polygonal 
spatial set operations (union, intersection, and difference) 
are discussed in [Eastman and Yessios, 1972; Weiler and 
Atherton, 1977]. 

To simulate reflection and refraction we call the 
beam tracer recursively by generating new beams whose 
cross-sections are the intersection polygon. The transfor- 
mations for reflection and refraction are discussed further 
in the next section and the appendix. 
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Recursion of the beam tracer can be terminated by 
several criteria: 

(1) Maximum tree depth: 5 levels is common. 

(2) Threshold of insignificance: determine if the intensity 
contributed by this branch of the tree will make a 
perceptible difference (called "adaptive tree depth 
control" in [Hall and Greenberg, 1983]). 

(3) Polygon size: terminate when polygon area is below 
some threshold, such as one pixel. 

2.2. Reflection and Refraction Transformations 

Reflection in a plane, which maps each point to its 
mirror image, is a linear transformation, and can be 
represented by a 4x4 homogeneous matrix. Refraction by 
a plane, however, is not a linear transformation in gen- 
eral. Figures 4 and 5, which were made with a standard 
ray tracer, show the distortion of an underwater checker- 
board viewed from above, and an above-water checker- 
board viewed from underwater, respectively. The second 
shows the effect of the critical angle which occurs when a 
ray is refracted from the denser material into the sparser 
one. Rays incident at the critical angle are refracted 
parallel to the surface (toward the horizon in our "fish- 
eye" view). Outside the circle, when the incident angle is 
greater than the critical angle, there is no refraction, and 
one has total internal reflection. (Humans do not see this 
phenomenon when swimming because our eyes are not 
adapted to focus underwater [Walker, 1984]). 

Since refraction bends lines, it cannot always be 
expressed as a linear transformation. There are two 
situations under which it is linear, however. For ortho- 
graphic projections the incident angle is constant, and 
refraction is equivalent to a skew or shear. The other 
situation is for rays at near-perpendicular incidence, 
known as parazial rays in geometrical optics. The latter 
corresponds to the centers of figures 4 and 5, where lines 
are approximately linear. Derivations of the matrix for- 
mulas for these transformations are given in the 

appendix. 

Since beam tracing, as outlined here, is limited to 
linear transformations, we must choose one of these 
approximations in order to simulate refraction. The 
consequences are that beam traced perspective pictures 
exhibiting refraction will not be optically correct. There 
will be no critical angle, and lines will never become bent. 
Beam traced approximations to figures 4 and 5 would 
look like normal checkerboards. The error of the approx- 
imation is highest for refraction from dense materials to 
sparse ones, but fortunately for beam tracing, humans are 
normally on the sparser side (e.g. in air, looking into 
water). This explains why refraction's curvature of lines 
is not widely known. 

2.3. Image Space Rendering 

Associated with each screen-space polygon is the tree 
of face fragments which are projected onto that polygon 
by the reflection and refraction transformations. Final 
intensities can be computed by scan converting all of the 
faces covering a given area in parallel, and applying the 
recursive intensity formula 

I =  c j ,  f+cj ,+e, lr+ctI  t 

to the tree of faces. This blends the diffuse, specular, 
reflected, and transmitted intensities according to the 
coefficients cd, c,, cr, and c t to compute a color for each 
pixel. 

Faceted or Gouraud shading of beam traced scenes 
can be done using a modified painter's algorithm. This 
was the technique used to produce the beam traced pic- 
tures in this paper (figures 6-9). Polygons are drawn into 
a frame buffer one-by-one as the beam tree is traversed. 
For each face or vertex, the diffuse and specular intensi- 
ties I d and I s are computed using the Phong lighting 
model [Newman and Sproull, 1979]. Since the polygons 
in the fragment lists of the beam tree are defined in the 
beam coordinate system, they must be transformed back 

Figure 4. View of an underwater checkerboard 
from air. 

Figure 5. View of an above-water checker- 
board from underwater. 
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Figure 6. A diffusely shaded cube resting on a 
mirror. 

Figure 8. A reflective cube in the interior of a 
texture mapped, reflective cube. 

Figure 7. A translucent dodecahedra within a 
cube of mirrors. 

to "world space" for all shading calculations; shading 
should not be done in a virtual or perspective space. If 
the coefficients Q, c,, cr, et, and the material tran- 
sparency are constant over each polygon, rendering can 
be done by simply adding the intensities into a frame 
buffer as each polygon is drawn. Since addition is com- 
mutative, the beam tree can be traversed in any order. 
This method requires a fairly robust polygon tiler, since 
the polygons are potentially concave with holes, and a 
single-pixel gap or overlap between polygons will result in 
an edge which is too dark or too light [Heckbert, 1983]. 
If the polygon tiler is limited to convex polygons, concavi- 
ties and holes can be eliminated by polygon subdivision. 
Note that the pixel to pixel coherence allows antialiased 
texture mapping (figure 13). 

Figure 9. An example of post-processing a 
beam tree to simulate an Omnimax projection 
system. 

3. Discuss ion  

A useful measure of any ray traced image is average 
ray tree size. This statistic is similar to the notion of 
depth complexity used in analyzing polygon display algo- 
rithms. With the beam tree'this is easily calculated since 

average ray tree size 

total area (in screen space) of the beam tree polygons 
screen area 

The total time spent ray tracing an image is equal to the 
average ray tree size, multiplied by the time needed to 
determine the nearest ray-polygon intersection, times the 
resolution of the image. In contrast, the beam tracer is 
resolution independent and therefore the relative 
efficiency of beam tracing versus ray tracing increases 
linearly with resolution. 
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Beam tracing, however, is more complicated then ray 
tracing and may not always be worth the extra expense. 
The expected improvement depends more on the intrinsic 
coherence of the imaged scene rather than resolution. We 
can define coherence as 

c o h e r e n c e  -~  average  r a y  t ree  s i ze  
total beam tree s ize  

This measure indicates to what degree the beam is 
fragmented-the more it is fragmented the lower the 
scene's coherence. If the coherence is very high then 
many rays are being traced in parallel and therefore a 
beam tracer will be faster than a ray tracer. In summary, 
beam tracing is most efficient when there are large homo- 
geneous regions in the picture. 

Figures 6 and 7 took 30 seconds and 5 minutes, 
respectively, to generate. We estimate a standard ray 
tracer would take 20-100 times longer. 

One nice feature of the beam tracer is that  it gen- 
erates a reasonably compact object space representation 
of the image. Because it produces object space coordi- 
nates, precise line drawings like figure 3 can be made. 
These are difficult to make with a ray tracer [Roth, 1982]. 
The intermediate representation can also be further mani- 
pulated. For example, the same tree can be rendered at 
different resolutions or a series of images can be produced 
which differ in their coloring and lighting parameters. 
Since the output of the beam tracer is in object space, 
fisheye projections such as Omnimax can be made by 
beam tracing in perspective with a very wide camera 
angle and distorting the result (figure 9). Methods for 
mapping and subdividing lines for the Omnimax projec- 
tion are given in [Max, 1983]. 

There are, however, some rather severe limitations to 
the technique as we've developed it here. We exploit 
coherence by assuming that  reflections and refractions 
form virtual images within a polygonal window and that  
these virtual images can be formed by linear transforma- 
tions. As we've shown, refraction under perspective is 
not a linear transformation thus the pictures are not phy- 
sically correct. In practice it is very difficult for "non- 
experts" to detect the discrepancy in the pictures we've 
generated. This linearity assumption is also not correct 
for curved surfaces since their normals vary from point to 
point. 

We now discuss several possibilities for future exten- 
sions of beam tracing. 

3.1. Light Beam Tracing 
In standard ray tracing, diffuse shading of surface 

points is done by aiming rays toward each point light 
source and determining if any objects are blocking the 
path of direct illumination. Blocked lights create sha- 
dows; unblocked lights contribute to the reflected inten- 
sity using Lambert 's  law. Since rays are aimed only at 
the lights, and not in all directions, this does not realisti- 
cally model indirect illumination. It is also intellectually 
unappealing because it creates an asymmetry between the 
light source and the eye point, contrary to the laws of 
physics. 

Diffuse shading and shadows for a beam-traced 
model can be computed as a pre~process to the polygon 
database. We propose a recursive extension of the 
Atherton-Weiler shadow algorithm [1978]. Beams are 
traced from each light source just as they are from the 
viewpoint ("light beam" tracing as opposed to "eye 
beam" tracing). The first order intersections are the 
directly illuminated surfaces, (not shadowed) and higher 
order intersections are illuminated surfaces resulting from 
the reflected and refracted light sources, an effect difficult 
to achieve with a standard ray tracer. The illuminated 
polygons thus formed can be built into the model data- 
base as "surface detail", that  is, polygons which do not 
affect the shape of the objects, but only their shading. If 
the light sources are infinitely distant, each face will have 
a constant diffuse intensity, which can be compactly 
saved in the database on this pre-process pass, for use 
during the rendering pass. 

This algorithm has several other advantages over 
diffuse shading during rendering. Light sources can be 
directional and have a polygonal cross-section. They 
need not be point sources. The depth of the eye beam 
tree can also be reduced, since light beam tracing pro- 
pagates shading information through several bounces (one 
could say that  the light beams meet the eye beams half- 
way). Finally, if the model and lights are stationary dur- 
ing an animation, light beam pre-processing need be done 
only once. 

3.2. Antlallaslng 
In classical ray tracing, antialiasing is usually done 

by adaptive subdivision of pixels near large intensity 
changes or small objects [Whitted, 1980; Roth, 1982]. 
The method at tempts to use heuristic criteria to probe 
the image frequently enough that  small details will not be 
overlooked. Depending on the criteria, it will sometimes 
subdivide too little, resulting in aliasing, or too much, in 
which case processing time is wasted. 

Before rendering, it is possible to subdivide the beam 
tree into non-overlapping polygonal regions and form an 
adjacency graph which indicates which regions are neigh- 
bors. Given this information, antialiasing edges is 
straightforward. Since the beam tracer resolves all 
hidden-surface questions, all that  is needed is a polygon 
scan converter with a pixel integrator. Pixel integration 
can be done by sub-sampling or with analytic methods 
[Catmull, 1978]. This same information might be useful 
when light beam tracing. The symmetry between eye 
and light allows us to relate partially-covered pixels to 
partially-obscured lights: the former suggests antialiasing, 
the latter suggests soft shadows. Consequently, if a 
region adjacency graph is made during light beam trac- 
ing, this can assist in the creation of soft-edged shadows. 

3.3. Rendering Options 
There are many other interesting variations to 

rendering the beam tree. If, as mentioned in the previous 
section, the output is divided into non-overlapping 
regions and we are doing faceted shading, the recursive 
shading formula can be calculated once for the entire 
region and a single polygon rendered. At  the other 
extreme, it might be worth modifying the polygon 

124 



Computer Graphics Volume 18, Number 3 July 1984 

renderer so that  it simultaneously tiles all the polygons in 
a region. This would allow the simulation of light scatter- 
ing through translucent materials, since in this case the 
intensity is an exponential function of material thickness 
[Kay and Greenberg, 1979] which varies over the 
polygons. As we've mentioned, because of the additive 
nature of the shading formula, the polygons can be ren- 
dered in any order but the overall intensity is modulated 
depending on the shading coefficients and the depth in 
the tree. If, on the other hand, we always render the 
scene in back-to-front order, one can accommodate spa- 
tially varying reflection and refraction coefficients. For 
example, cut glass could be simulated by modulating 
these parameters with a texture map. Finally, the coher- 
ence in the beam tree often allows certain aspects of the 
shading calculation to be done once per region which 
allows a more complicated shading model to be used. For 
example, we have used constant values for the four inten- 
sity coefficients, but more realistic results could be 
obtained using Fresnel's equations [Longhurst, 1967]. 

4. A c k n o w l e d g e m e n t s  

We would like to thank to Kevin Hunter and Jules 
Bloomenthal for proofreading and Jane Nisselson for 
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5. Append ix :  Ref lect ion  and Refrac t ion  Trans for -  
m a t i o n s  

We derive the homogeneous 4x4 matrix form for the 
reflection and refraction transformations. 

Figure 10 shows the geometry of an incident ray I hitting 
a plane and generating a reflected ray R and refracted 
(transmitted) ray T. The three rays and the surface nor- 
mal N all lie in a plane. The index of refraction changes 
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Figure 10. Geometry of reflection and refrac- 
tion in the plane of incidence. 

from T/1 to ~2 at the boundary. The angle of incidence is 
01 and the angle of refraction is 02 . We wish to find the 
transformations which map the real reflected and 
refracted points Pr and Pt to their virtual image P. 

Notation: 

I---- incident ray direction, [1[=1 

N = (A B C O) T = normal to plane 

IN[ = ~/A2+B2+C e = 1 

L = (A B C D) ---- coefficients of plane equation: 

LP  = A z + B y + C z + D  ---- 0 

P ---- (x y z 1) T = any point 

The direction of the reflected ray is given by: 

R = I - 2 ( N . I ) N  = I+2dN (a unit vector) 

where: d ~ c o s O  l ~ - N ' l >  0 

The reflected point can be found by noting that  LP r gives 
the distance of a point P ,  from the plane. The point for- 
mula has a form similar to the direction formula: 

P - - - -  P, -2 (LP , )N  = P , - 2 N L P  r = M ~ r  

where M r is the homogeneous 4x4 matrix for the 
reflection transformation: 

1-2A 2 - 2 A B  -2A  C -2AD I 

I - 2 A B  1-2/fl - 2 B C  -2BD 
M, = I - 2 N L  ~ - 2 A C  - 2 B C  1-2C ~ -2 CDI 

o o o 1 '  

and I is a 4x4 identity matrix. 

Shell's law relates the incident and refracted angles: 

~hsinO 1 ~ ~2sin02 

The direction of the refracted ray is: 

T = ~I-(c-qd)N (a unit vector) 

where: q = q l / r ] 2  = relative indez of refraction 

and ¢ = cosO 2 = x/1-~/2(1-d 2) 

There is no refracted ray (total internal reflection) if 
1-~/2(1-d 2) < 0. Our formula for T is equivalent to, but 
simpler than, the one in [Whitted, 1980]. 

For orthographic projections, the incident direction I is 
independent of object position, and refraction is a skew 
transformation parallel to the plane which maps a point 
Pt as follows: 

p ~__ -  pt+(tanOl-tanO2))QLp t 

where: M =  N × ( I × N )  = I-(N'I)N= l+dN, 
M - - - -  vector tangent to plane, [M[ ~ sinO l 

and P = MtPt,  where M t is a 4x4 matrix: 

M t ---- I + a ( l + d N ) L  

tanOl-tan02 1 
where: c~ = ---- secOvt/secO 2 . . . .  

sinO l d e 

If viewing along the Z axis, then I = (0 0 I 0) T, d = 
-C,  and 
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l - c A  2 C -c~ABC -c~A C 2 -c~ACD I 

I -t~A.BC 1-aB2 C - a B C  2 -aBCD 

M, = aA(1--C e) aB(1-C e) l + a q l - C  e) aD(1-Ce)l  

0 O 0 l 

This formula is exact for orthographic projections. If the 
eye is local, however, I and d vary from point to point on 
the surface, and there is no linear transformation from Pt 
to P. 

Observing figure 11, however, we see that  rays with small 
incidence angles (paraxial rays) produce virtual refracted 
rays which nearly come to a focus. Thus, for paraxial 
rays, 

D 1 tan02 tan~ 2 
- -  ~- - -  = - -  ~-- constant 
D 2 tan01 tan¢ 1 

If we take the constant to be rll/r/2, then 

qltan01 = ~/2tan02 

We call this the tangent law. For paraxial rays, 
sin0 ~ tan0 ~ 0, so Shell's law is in agreement with t h e  
tangent law. A graphical comparison of the two laws is 
shown in figure 12. 

The virtual focus can be interpreted as follows: When 
looking across a boundary with relative index of refrac- 
tion ~/, objects appear to be at t/ times their actual dis- 
tance [Feynman, 1963]. Recall that  light travels slower in 
denser materials by precisely this factor 7. Within the 
paraxial approximation, then, refraction is equivalent to a 
scaling transformation perpendicular to the plane: 

P : Pt+(~I-1)(LPt)N : M t P  t 

\ 
x virtual focus 

Figure 11. Refracted paraxial rays come to a 
virtual focus in the first medium at a distance 
D e = 1 D  1 from the plane. Left diagram illus- 
t ra tesntangent  law, right illustrates Snell's 
law. 

\ 

t 

o* 

tangent law: / 
rhtan01 _~ t / 2 t a n 8 2 ~  

~lSlnO 1 ~ ~ 2 s i n 0  2 

O o 

Figure 12. Refraction angle as a function of 
incidence angle using Shell's law and tangent 
law. For this graph, ~/2/r/1 = 1.33. 

M, = I+XNL : 

where: X : ~1-1 

I+XA XAB XAC XAD] 

XAB I+) ,B 2 XBC XBD I 
XAC ),BC l + k C  e XCD I 

0 o o 1 J 

Note the similarity between this and the reflection for- 
mula. Reflection is simply paraxial refraction with 

---- -1. 
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