
1

Introduction to
Realtime Ray Tracing

Course 41

Introduction to
Realtime Ray Tracing

Course 41

Philipp Slusallek Peter Shirley

Bill Mark Gordon Stoll Ingo Wald

2

Introduction to
Realtime Ray Tracing
Introduction to
Realtime Ray Tracing

• Introduction to Ray Tracing

– What is Ray Tracing?

– Comparison with Rasterization

– Why Now? / Timeline

– Reasons and Examples for Using Ray Tracing

– Open Issues

3

Rendering in
Computer Graphics

Rendering in
Computer Graphics

Introduction to
Realtime Ray Tracing
Introduction to
Realtime Ray Tracing

Rasterization:
Projection geometry forward

Ray Tracing:
Project image samples backwards

Computer graphics has only two basic algorithms for rendering 3D scenes to a
2D screen. The dominant algorithms for interactive computer graphics today is
the rasterization algorithm implemented in all graphic chips. It conceptually takes
a single triangle at a time, projects it to the screen and paints all covered pixels
(subject to the Z-buffer and other test and more or less complex shading
computations).

Because the HW has no knowledge about the scene it must process every
triangle leading to a linear complexity with respect to scene size: Twice the
number of triangles leads to twice the rendering time. While here are options to
optimize this, must be done in the application separate from the HW.

The other algorithm – ray tracing – works in fundamentally different ways. It starts
by shooting rays for each pixel into the scenes and uses advanced spatial
indexes (aka. acceleration structures) to quickly locate the geometric primitive
that is being hit. Because these indexes are hierarchical they allow for a
logarithmic complexity: Above something like 1 million triangles the rendering
time hardly changes any more.

4

Current Technology:
Rasterization
Current Technology:
Rasterization

• Rasterization-Pipeline

– Highly successful technology

– From graphics supercomputers to
an add-on in a PC chip-set

• Advantages

– Simple and proven algorithm

– Getting faster quickly

– Trend towards full programmability

Application

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Framebuffer

Computer graphics knows two different technologies for generating a 2D image
from 3D scene description: rasterization and ray tracing.

Virtually all interactive graphics today uses the rasterization technique. Because it
was easier to implement in hardware during early days of interactive computer
graphics (early 1980s), it took over the world. Mainly driven by companies such
as SGI, Nvidia, ATI, and some others rasterization hardware developed rapidly to
the point that this graphics technology is already embedded in many motherboard
chip sets. And the technology is still developing at an astonishing pace. In
particular, significant programmability is being added to the rasterization pipeline
in every new generation.

5

Current Technology:
Rasterization
Current Technology:
Rasterization

• Primitive operation of all interactive graphics !!

– Scan converts a single triangle at a time

• Sequentially processes every triangle individually

– Cannot access more than one triangle at a time

� But most effects need access to the entire scene:
Shadows, reflection, global illumination

The basic operation of rasterization is to sequentially project each triangle sent by
the application and projecting it to the 2D screen. Then the pixel covered by the
triangle are computed and each one is colored according to some programmable
shader functions.

It is important to note that the rasterization pipeline derives its basic efficiency
from the fact that it conceptually looks only at a single triangle at a time in the
order they ar submitted by the application. At no point does the graphics chip
have the ability to look at the rest of the scene.

Yet, this ability is key to some of the most basic and simple optical effects that
are required for faithfully rendering 3D scenes. Computing the shadows cast on a
triangle requires knowing about the triangles casting the shadow, computing the
reflection requires the ability to find the triangles being reflected, and computing
indirect illumination on a triangle requires access to the entire scene.

With rasterization such functionality cannot be computed accurately and
approximations and fakes must be used (e.g. shadow maps, reflection maps).
However, they necessarily have inaccuracies and artifacts and are generally less
efficient.

6

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

Ray tracing can be formulated very much like the pipeline known from
rasterization (an with similar efficiency). A significant change, however, is the
feedback loops in the pipeline, which are the key to its ability to compute global
information in the scene.

7

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The first stage in the pipeline computes a rays from the camera’s parameter and
a 2D sample location on the screen.

8

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The traversal stage takes the ray and traverses the spatial index to locate the first
hit point of the ray with a geometric object.

9

What is Ray Tracing?
Traversal
What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Here we visualize the spatial index as a (2D-) grid. Obviously the index is a 3D
structure. However, 3D-grids are not often used (except in some HW projects) as
they waste much memory and cannot adapt to local changes, such as a highly
dense region with many close-by triangles. The grid only symbolizes the spatial
index here.

Objects and primitives are spatially sorted and pointers to them are inserted into
all 3D grid cells, that they overlap. This is done in a preprocessing step. During
runtime, we can quickly traverse all cells hat are pierced by a ray and only
compute intersections with primitives that are in these cells and are thus close to
the rays and like to get intersected.

10

What is Ray Tracing?
Traversal
What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Traversal is done is a simple algorithm that will be explained in another part of
the course.

11

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

When possible objects are located the intersection stage computed the exact
intersection of the ray with the geometric primitive (e.g. triangle). It not hit point is
found with any of the objects in the cell, we go back to the traversal stage and
continue traversal.

12

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

Once a hit point has been found it is forwarded to the shading stage, which job it
is to compute the color of the returned light, which can then be used to color the
corresponding pixel. In order to know how much light is reflected from the
intersected location towards the camera, we must first know how much light
arrives at this location.

We can do this by shooting some more rays.

13

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

For example, we can send a “shadow ray” to all light sources in order to find out if
there is a free path between the point and the light. This is the case if there is no
intersection with any object from ray segment between the hit point and the light
source. This elegantly, accurately, and efficiently solves the shadow computation
problem in graphics once and for all.

The shadow ray is fed into the pipeline just as a normal ray but some
optimizations can be done because we do not need to find the first intersection
because any intersection would be fine.

14

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The show rays are then traversed and intersected as normal, but no shading
computations need to be done for them.

15

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

When the original shader get the information from the shadow ray it can adapt its
shading results accordingly. Note that this operation requires full recursion in the
shader, as we must wait until the results of tracing the shadow ray returns.

16

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

Similarly the shader may trace additional rays for querying the incoming
illumination from other directions. For refraction or reflection, new rays are send
to find out how much light arrived from that particular directions. This is a full
recursive ray tracing procedure as the new hit point may in turns start new rays
(which a shadow ray would not do).

17

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

A fraction of the light from these additional rays is then added to the pixels color
based on the reflection propertied of the primary hit point …

18

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

… and finally the results of the rays tracing process is a single color that can be
directly written to the frame buffer.

No z-buffer, accumulation buffer, stencil buffer, alpha buffer are needed as these
computations are performed by the surface and other shaders or are not even
needed with ray tracing at all.

This property of ray tracing to only write the final result to memory is one of its
major strengths and leads to significantly reduced memory bandwidth.

19

What is Ray Tracing?What is Ray Tracing?

- Global effects

- Parallel (as nature)

- Fully automatic

- Demand driven

- Per pixel operations

- Highly efficient

� Fundamental Technology for Next Generation Graphics

This slide summarized the most important reasons for using ray tracing:

-IT supports computing global effects because global information can be
queried from a scene by tracing rays into its environment.

- Each primary ray is completely independent from all other primary rays,
which would ultimate make it possible to assign one processor per primary
ray. Ray tracing has also been called “embarrassingly parallel”.

- Ray tracing can deal with “declarative scene descriptions” that specify
how a scene should look like, without specifying how this effect should be
achieved. This includes full orthogonal descriptions of the geometry, its
appearance (surface shaders), the camera, as well as the lighting
environment and any light sources. This scene description can then be
rendered fully automatically without the help of the creating application.

- Ray tracing is demand driven, meaning it only ever accesses something
if that something is hit by a ray. This means that there might be gigabytes
of stuff hidden behind a wall, yet a ray tracer might not even load it into
memory.

- All operations are performed per pixel, including occlusion culling,
interpolations, illumination etc. This leads to a high image quality.

- In summary of the above points ray tracing is highly efficient and in many
cases more efficient than rasterization. For instance, it does not need to
build a complete reflection map but simply computes the reflection where
relevant.

20

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Definition: Rasterization

Given a set of rays and a primitive, efficiently
compute the subset of rays hitting the primitive

Uses 2D grid as an index structure for efficiency

• Definition: Ray Tracing

Given a ray and set of primitives, efficiently
compute the subset of primitives hit by the ray

Uses a (hierarchical) 3D spatial index for efficiency

The two definitions show that the two algorithms are quite related but start at
different end of the spectrum. Rasterization only uses a 2D grid as an index
structure in image space. This limits the set of rays to those, that start at a single
point and go through a regular set of sample points on a plane. This is a severe
limitation already. No 3D index structure in object space is supported, even
though this can be added by the application. This, however, means that it cannot
be supported in hardware and there is always a communication overhead.

In contrast ray tracing is flexible in the number and the set of traced rays but
needs a hierarchical spatial index for efficient computations. Ray tracing does not
need to look at all scene objects but only deals with those that are visible. It uses
an efficient 3D spatial index structure to quickly find any primitive that may be hit
by a ray. A hierarchical index structure leads to logarithmic scalability in terms of
scene size, which is a significant advantage over rasterization. These spatial
index structure can also be reused for other purposes such as collision detection
and many others. However, this index structure must be built to great detail,
which poses challenges for dynamic and interactive scenes.

Because of the spatial 3D index, ray tracing can efficiently answer queries for
individual or small groups of rays, which is handy for tracing just the necessary
rays for a small reflective object or such.

21

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• 3D object space index (e.g. kd-tree)

– Limits scene dynamics (may require index rebuilt)

– Increases scalability with scene size � O(log n)

– Efficiently supports small & arbitrary sets of rays

• Few rays reflecting off of surface � ray tracing problem

• 2D image space grid

– Rays limited to regular sampling & planar perspective

See previous slide.

22

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Convergence: 2D grid plus object space index

– Brings rasterization closer to ray tracing

• Performs front to back traversal with groups of rays

• At leafs parallel intersection computation using rasterization

– Introduces same limitations (e.g. scene dynamics)

• But coarser index may be OK (traversal vs. intersection cost)

– Computation split into HW and application SW

�More complex, latency, communication bandwidth, …

Object space 3D spatial indices can be used with rasterization. It brings
rasterization close to being ray tracing as it then performs a front to back
traversal operation (for larger packets of rays) and uses the rasterization engine
for doing the ray triangle intersection test.

However, this approach imposes the same limitations on rasterization such as
the complexity to support dynamic scenes. It also splits the computations
between the HW and the application software, which adds overhead and
complications.

23

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Per Pixel Efficiency
– Surface shaders principally have same complexity

– Rasterization:

• Incremental computation between pixels (triangle setup)

• Overhead due to overdraw (Z-buffer)

– Ray tracing:

• No incremental computation (less important with complexity)

• Caching works well even for finely tessellated surfaces

• May shoot arbitrary rays to query about global environment

Shaders in GPUs and RPUs are fundamentally similar and have the same
complexity for their basic operations. The main difference is that ray tracing can
just shoot rays to query about global information in a scene (reflection, indirect
lighting, …), where rasterization must fall back to inefficient multi-pass methods.

Rasterization has the option of doing incremental operations between pixels of
the same triangle, but looses is the scene is too finely tesselated where this
advantage can turn into a disadvantage. Ray tracing must re-compute all
properties of the hit geometry for every ray but can take advantage of caching
and SIMD computations to optimize for this case (see HW section).

24

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Benefits of On-Demand Computation

– Only required computations � efficiency

• E.g.: must not compute entire reflection map

– No re-sampling of pre-computed data � accuracy

– Exact computation � reliability

– Fully performed in renderer (not app.) � simplicity

– Data loaded only if needed � resources

The on-demand computation offers many benefits:

-It only computes information that is known to contribute to the image, which
leads to increased efficiency. It also offers tighter control over the computer work
load.

- Because data is computed on-the-fly when it is needed, ray tracing rarely stores
temporary results in memory. An example are shadow: It traces the rays as
needed instead of storing a discretely sampled representation all possible rays,
which must be re-sampled when queried. This re-sampling can significantly
reduce the accuracy and lead to artifacts.

- Because the computations are performed accurately and physically correct for
exactly the necessary rays, the results have less artifacts and are much more
reliable.

- because ray tracing supports a full declarative scene description, the entire
rendering computation can be implemented in hardware or at least with in a
separate rendering engine. The application is only needed to update the scene
between frames.

- Due to the on-demand approach necessary data is only loaded when needed,
which can greatly reduce the working set and thus the resources needed for a
given computation.

25

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Hardware Support
– Rasterization has mature & quickly evolving HW

• High-performance, highly parallel, stream computing engine

– Ray tracing mostly implemented in SW

• Requires flexible control flow, recursion & stacks, flexible i/o, …

• Requires virtual memory and demand loading due scene size

• Requires loops in the HW pipeline (e.g. generating new rays)

• Depend heavily on caching and suitable working sets

� Not well supported by current HW

Ray tracing is still lacking significantly with respect to hardware support. While
rasterization has seen more than twenty years of intense development, hardware
for ray tracing is only just appearing. Nonetheless, it has been shown that ray
tracing can be implemented highly efficiently in hardware (see RPU section).

However, ray tracing requires significantly more flexibility from a hardware
architecture, which necessitates extensions and new approaches compared to
today’s graphics architectures.

26

Requirements for
Realtime Ray Tracing
Requirements for
Realtime Ray Tracing

• Requirements
– High floating point performance

• Traversal & intersection computations

– Flexible control flow, multiple threads

• Recursion, efficient traversal of kd-tree, …

– Exploitation of coherence

• Caching, packets, efficient traversal, …

– High bandwidth

• Between traversal, intersection, and shading; to caches

Ray tracing can only be implemented efficiently with floating point computations.
Traversal, intersection, and shading all require many FLOPS per ray. Because of
the traversal of hierarchical tree structures and the more-or-less general purpose
nature of shading computations, a flexible hardware support is required.

However, ray tracing inherently has a high degree of coherence that can be used
to reduce the computational and memory bandwidth requirements of a naïve
implementation.

27

Why Now?
Timeline
Why Now?
Timeline

• Early 1980s:
– FLOPS in HW very expensive (8087 used 1980-89)

– Very limited HW resources (“3M“)

– Small 3D scenes with large triangles

• Consequences
– Raster-pipeline model for parallelism & throughput

– Mainly rasterization, limited FLOPS

– RT required many FLOPS, bandwidth, no pipeline

An interesting question to ask is: Why has realtime ray tracing not been done
before?

It turns out that many researchers have repeatedly stated very early that ray
tracing would eventually become faster than rasterization because of its
logarithmic complexity in terms of scene size. However, these claims have not
been fulfilled for more than twenty years, and research on ray tracing essentially
stopped in the late 1980s / early 1990s. There had been no research that has
explored WHY ray tracing has been so dramatically slower than rasterization
despite other expectations.

Even though, there are several reasons why realtime performance could not be
realized in the early days. FLOPS have been very expensive in these days,
scenes usually had few large polygons, and hardware resources were very
scarce. Due to its purely local computational model, rasterization is much better
suited for such an environment.

Since then a complete generation of researchers, developers, and users grew up
exclusive in a rasterization based world. Now everyone just “knew” that ray
tracing is slow and cannot be implemented in hardware.

28

Why Now?
Timeline
Why Now?
Timeline

• Mid 1990s:

– Nvidia & ATI create integrated 3D graphics chips

– Mainly rasterization, limited FLOPS

• Ray Tracing

– SW research had mostly stopped, lack of progress

– HW research limited by HW resources

• Mostly focusing on intersection computation only

In the mid 1990s VLSI graphics chips mainly accelerated the rasterization part of
OpenGL, which mainly consists of fixed point arithmetic. FLOPS were still
expensive to realize in hardware. Thus the rasterization took off in the mass
market while ray tracing still could not be realized on a competitive basis.

29

Why Now?
Timeline
Why Now?
Timeline

• 1998-2000:

– GPUs: Geometry engine, many fixed function FLOPS

– Parallel RTRT on supercomputers & PC clusters

• 2001-2002

– Programmable GPUs

– RT on GPUs: Unsuitable programming model

– Simulation show: HW for RTRT is possible

At the end of the late 1990s the hardware resources became available to perform
realtime ray tracing on large supercomputers and a few years later also on
clusters of PCs. FLOPS became cheap and were available in every PC through
SIMD, high clock rates, long CPU pipelines, etc. However, the new architecture
was not well suited for the inner loops of traditional ray tracing algorithms. Only
when the algorithms were re-implemented could these new hardware features be
exploited effectively.

A few years later large numbers of FLOPS also became available in
programmable GPUs. However, until now their programming model is to inflexible
to effectively exploit the raw performance for ray tracing.

30

Why Now?
Timeline
Why Now?
Timeline

• ~2004:

– Fully programmable, high-performance GPUs

– Limited control flow, no recursion, no stack

– First fixed-function RTRT-HW (FPGA)

• Now:

– Fully programmable, scalable RPU (FPGA)

The features and flexibility of GPUs has increased significantly since then. But it
is still insufficient to implement fast ray tracing on GPUs except in toy examples.
It will be interesting to see where GPUs will be moving in the next few years. The
dominant stream programming model seems not well suited for ray tracing type
algorithms.

However, in the mean time custom hardware has been developed that performs
the entire computation highly efficiently in hardware. In 2004 a first fixed-function
ray tracing chip was presented. A year later the first fully programmable RPU (ray
processing unit) was presented at Siggraph. Interesting enough the latter
architecture is based to large degrees on GPUs but extends then in key locations
by dedicated hardware units as well as significantly increased programming
flexibility.

31

Why Now?Why Now?

• Summary

– Success of rasterization and lack of progress
eliminated RT research in 1990s

• Little low level optimization, assumption there is no coherence

– CPUs got faster but RT did not take advantage of it

• SSE, stalls due to long pipelines, coherence, …

– Better algorithms later allowed to catch up with HW

– RT in HW: resources only became available recently

In summary, it becomes clear that ray tracing has a much higher fixed cost in
terms of cost of hardware. This has held back ray tracing for long enough to
discourage most researchers that by the time the resources became available,
nobody was interested any more. However, at this point progress could be made
in great leaps because of catching up with the then current hardware and
software possibilities.

32

Reasons for Using RTRTReasons for Using RTRT

• What are the reasons for industry to choose
Realtime Ray Tracing?
– Highly realistic images by default

– Physical correctness and dependability

– Support for massive scenes

– Integration of many different primitive types

– Declarative scene description

– Realtime global illumination

We are providing realtime ray tracing technology to industry through our spin-off
company inTrace GmbH. We have seen a significant interest from industry
already three years ago. inTrace customers are now all major German car
manufactures (Volkswagen, DaimlerChrysler, BMW, Audi) and Airbus with
additional projects run at Skoda, Boeing, and other companies.

From this contacts we see the following main reasons for industry to be
interested in this new technology. However, the reasons are weighted very
differently by different departments even of the same company.

-The better image quality due to accurate shadows, reflections, and refraction
even on highly complex models is a major motivation for most departments.

- Often more important is the fact that the viewer can be confident that what he
sees on the screen has been computed physically correct and that he can
depend of these results. Given that at design reviews major investments are
made based on the visual appearance of a virtual model, this dependability if of
paramount importance.

- Large CAD models usually had to be simplified significantly for achieving
realtime performance even with the best rasterization technology. Due to the
logarithmic scaling, companies can now work interactively with full detail models
like entire cars or airplanes down to details like individual screws. This greatly
simplifies their process pipeline.

- Ray tracing is also able to render spline surfaces and points directly, which has
caused significant interest. Similarly, global illumination is interesting for providing
the still missing level of realism.

- Finally, the ability to easily and fully automatically describe an entire highly
complex scene with shaders from a predefined library, such that the visualization
works on the press of a button is highly interesting to industry

33

Reasons for Using RTRT
Highly Realistic Images
Reasons for Using RTRT
Highly Realistic Images

• Highly Realistic Images by Default
– Typical effects are automatically accounted for

• E.g.: shadows, reflection, refraction, …

• No special code necessary, but tricks can still be used

– All effects are correctly ordered globally

• Do need for application to do sorting (e.g. for transparency)

– Orthogonality of geometry, shading, lighting, …

• Can be created independently and used without side effects

• Reusability: e.g. shader libraries

See previous slide.

34

Reasons for Using RTRT
Highly Realistic Images
Reasons for Using RTRT
Highly Realistic Images

Volkswagen Beetle with correct shadows and (multi-)reflections on curved surfaces

This image shows a simple example of the complex optical effects that need to
be rendered with a car model, including shadows of curved surfaces, multiple
reflections, environment maps, and many more.

35

Reasons for Using
Ray Tracing
Reasons for Using
Ray Tracing

• Physical Correctness and Dependability

– Numerous approximations caused by rasterization

– Might be good enough for games (but maybe not?)

– Industry needs dependable visual results

• Benefits

– Users develop trust in the visual results

– Important decisions can be based on virtual models

See before.

36

Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

Only ray tracing is able to render a complex image like this. Rays trees of at least
depth of 10 and up to 25 and more must be traced to obtain faithful results. In
total this adds up to more than 50 rays per pixel. This images runs in 5-7 fps on a
small PC cluster.

37

Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

In a recent project an entire car was rendered directly with trimmed NURBS
surfaces instead of many triangles. In addition, we used a highly accurate car
paint shader and global illumination from a sky dome. For realtime purposes a
large PC cluster is required.

38

Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

BTF Data Courtesy R. Klein, Uni Bonn

Rendered with accurately measured BTF data
that accounts for micro lighting effects

Textured Phong for
comparison

This image shows the difference between using texture mapping (lower right
image) and using measured BTF data, which captures the fine detail of
illumination on surfaces with micro structure like leather.

The data sets have been provided by Prof. Klein, Bonn University and are directly
rendered on trimmed NURBS surfaces.

39

Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

VR scene illuminated from realtime video feed, AR with realtime environment lighting

Ray tracing can also be used in a VR or mixed reality context. Instead of
compositing multiple 2D images, here the compositing is performed in the surface
shaders of the models. In addition environment lighting is integrated from the TV
screen and a 180 degree light probe, which also provides the reflections on the
car.

40

Reasons for Using RTRT:
Massive Models
Reasons for Using RTRT:
Massive Models

• Massive Scenes

– Scales logarithmically with scene size

– Supports billions of triangles

• Benefits

– Can render entire CAD models without simplification

– Greatly simplifies and speeds up many tasks

See before.

41

Reasons for Using RTRT:
Massive Models
Reasons for Using RTRT:
Massive Models

Ray tracing has been the first and (to our knowledge) only technology to
interactively render the entire Boeing 777 data set. It consists of 350 million
polygons and takes up to 30 GB of data on disk. Every detail is models including
tiny screws, cables, pipes, values, and many more. With ray tracing this model
can be rendered interactively even on a dual-processor PC with 2-3 fps at video
resolution.

The right image contains 365 000 plants with a total of roughly 1.5 billion
polygons. All leafs use alpha-mapped textures leading to an extremely high depth
complexity. Still the scene can be rendered with interactive performance on a
decent PC cluster. Even smooth lighting from the sky dome can be integrated. An
good approximation is then shown during interaction but the image converges to
a high quality solution with a few seconds.

42

Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

• Flexible Primitive Types

– Triangles

– Volumes data sets

• Iso-surfaces & direct visualization

• Regular, rectilinear, curvilinear, unstructured, …

– Splines and subdivision surfaces

– Points

See before.

43

Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Triangles, Bezier splines, and subdivision surfaces fully integrated

The image shows a mixture of triangles, splines, and subdivision surfaces
rendered directly using ray tracing at interactive performance.

44

Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Volume visualization using multiple iso-surfaces in combination with surface rendering

Volume data sets can also be visualized interactively with ray tracing. These
images show iso-surfaces (combined with surfaces in the lower left). IN recent
work we also integrated direct volume rendering as well as volume rendering
semi- and unstructured data sets at interactive performance.

45

Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Realtime ray tracing of point clouds (1 Mpoints each)
On one dual-Opteron 2.4 GHz: 4-9 fps

24 MPoints, 2.1 fps with shadow @ 640x480

These images show large point clouds being interactively ray traced. Even huge
scenes with 24 million points can be rendered interactively with shadows.

46

Reasons for Using RTRT:
Declarative Graphics
Reasons for Using RTRT:
Declarative Graphics

• Declarative Graphics Interface

– Application specifies scene once, plus updates

– Rendering fully performed by renderer (e.g. in HW)

– Similar to scene graphs, PostScript, or latest GUIs

• Benefits

– Greatly simplifies application programming

– Allows for complete HW acceleration

See before.

47

Reasons for Using RTRT:
Declarative Graphics
Reasons for Using RTRT:
Declarative Graphics

This simple image the orthogonality of geometry, appearance, and lighting that is
a prerequisite for declarative scene descriptions. The scene contains simple
surfaces, a volume and a hologram (light field) together with a procedural wood
shader, a bump mapped mirror, and direct volume rendering effects. Every object
and appearance has been separately modeled, but the ray tracer combines all
the combinations of effects fully automatically and always physically-correct (at
least as long each object is correctly modeled).

48

Reasons for Using RTRT:
Declarative Graphics
Reasons for Using RTRT:
Declarative Graphics

These images are from a prototype computer game running in realtime on the ray
tracer. It consists of more than 40 million polygons and all optical effects are fully
simulated at rendering time. All trees are fully models and no LOD is being used.

49

Reasons for Using RTRT:
Global Illumination
Reasons for Using RTRT:
Global Illumination

• Global Illumination

– Simulating global lighting through tracing rays

– Indirect diffuse and caustic illumination

– Fully recomputed at up to 20 fps

• Benefits

– Add the subtle but highly important clue for realism

– Allows flexible light planning and control

See before.

50

Reasons for Using RTRT:
Global Illumination
Reasons for Using RTRT:
Global Illumination

Conference room (380 000 tris, 104 lights) with full global illumination in realtime

Conference room rendered with global illumination (converged view). Due
to the shape of the light sources that are long and thin oriented along the
table, the differences in the shadow boundaries are clearly visible being
almost sharp in one direction and very smooth in the other. The scene
also contains many specular materials such as metal frames of chairs and
metal frames of the boards.

51

Reasons for Using RTRT:
Global Illumination
Reasons for Using RTRT:
Global Illumination

250k / 3 fps250k / 3 fps 25M / 11 fps25M / 11 fps

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

This image shows the results of interactive photon mapping for simulating
the emission properties of this complex car headlight consisting of
800,000 polygons (top image). The left image shows the quality of
simulating the illumination of the headlight on a grey wall with 250,000
photons. We can fully simulate the illumination at 3 fps on a cluster of 25
PCs. Once the accumulate 30 seconds worth of photons (25 million) and
then only visualize them, we even reach 11 fps.

The quality of the simulation results is extremely good …

52

Reasons for Using RTRT:
Global Illumination
Reasons for Using RTRT:
Global Illumination

250k / 3 fps250k / 3 fps 25M / 11 fps25M / 11 fps PhotographPhotograph

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

As the image on the far right shows. Nearly all features are accurately
represented. Commercial applications take several hours for this type of
simulation.

53

Open Issues with
Realtime Ray Tracing
Open Issues with
Realtime Ray Tracing

• Dynamic scenes
– Changes to geometry � updates to spatial index

– Key: Need information from application !!!

• No information � must inspect everything � O(n)

• Approaches
– Separate scenes by temporal characteristic

– Build index lazily, build fuzzy index

– Adapt built parameters (fast vs. thorough)

Many dynamic scenes work reasonable well already with ray tracing but a lot of
improvements can still be done. In particular fully dynamic scenes are still
problematic.

This problem can only be solved efficiently when the application can provide
enough information about the movement of surfaces. If now information is known,
any rendering algorithms must resolve to sequentially render every single
surface. However, with the proper information, significant speed-up can be
reached. The remaining question is which information can be made available,
how is it represented best, and how can the renderer make best use of it.

54

Open Issues with
Realtime Ray Tracing
Open Issues with
Realtime Ray Tracing

• Efficient Anti-Aliasing & Glossy Reflection

– Requires many samples for proper integration

• Image plane � Can we do better than super-sampling?

• Shading and texture aliasing � ray differentials (integration?)

• Large/detailed scenes � geometry aliasing, temporal noise

– Super-sampling too costly and LOD undesirable

Anti-aliasing and glossy reflections are just one example of the difficulty to
integrate over large domains efficiently with a point sampling approach. This is
still a large open question.

55

Open Issues with
Realtime Ray Tracing
Open Issues with
Realtime Ray Tracing

• Hardware Support
– Goal: realtime ray tracing on every desktop

• >60 fps, 2-3 Mpix, huge models, complex lighting, …

• Possible Solutions
– Faster, multi-core CPUs: might take too long

– Cell: Highly interesting, but no caches

– GPUs: interesting but limited control flow

– Custom HW: RPU (flexible GPU + custom traversal)

There has been a lot of work recently on improved hardware support for realtime
ray tracing. While PC clusters are a reasonable solution for larger industries, they
cannot work in the mass market. Here a small-form factor (PC) solution needs to
be found.

A number of options are available ranging from highly-parallel multi-core designs
of general purpose CPUs, over the new Cell architecture to GPUs and custom
ray tracing hardware. Exactly what will be the best solution for what market is still
an open question.

56

