
Information Extraction

1

Sequence Labeling

• Many information extraction tasks can be formulated as sequence
labeling tasks. Sequence labelers assign a class label to each item in
a sequential structure.

• Sequence labeling methods are appropriate for problems where the
class of an item depends on other (typically nearby) items in the
sequence.

• Examples of sequential labeling tasks: part-of-speech tagging,
syntactic chunking, named entity recognition.

• A naive approach would consider all possible label sequences and
choose the best one. But that is too expensive, we need more
efficient methods.

Information Extraction

2

Markov Models

• A Markov Chain is a finite-state automaton that has a probability
associated with each transition (arc), where the input uniquely defines
the transitions that can be taken.

• In a first-order Markov chain, the probability of a state depends only
on the previous state, where qi ǫ Q are states:

Markov Assumption: P(qi | q1...qi−1) = P(qi | qi−1)

The probabilities of all of the outgoing arcs of a state must sum to 1.

• The Markov chain can be traversed to compute the probability of a
particular sequence of labels.

Information Extraction

3

Hidden Markov Models

• A Hidden Markov Model (HMM) is used to find the best assignment
of class labels for a sequence of input tokens. It finds the most likely
sequence of labels for the input as a whole.

• The input tokens are the observed events.

• The class labels are the hidden events, such as part-of-speech tags
or Named Entity classes.

• The goal of an HMM is to recover the hidden events from the
observed events (i.e., to recover class labels for the input tokens).

Information Extraction

4

Using Hidden Markov Models

• We typically use first-order HMMs, which is first-order Markov chain
which assumes that the probability of an observation depends only on
the state that produced it (i.e., it is independent of other states and
observations).

Observation Independence: P(oi|qi)

where oi ǫ O are the observations.

• For information extraction, we typically use HMMs as a decoder .
Given an HMM and input sequence, we want to discover the label
sequence (hidden states) that is most likely.

• Each state typically represents a class label (i.e., the hidden state
that will be recovered). Consequently, we need two sets of
probabilities: P(wordi | tagi) and P(tagi | tagi−1).

Information Extraction

5

The Viterbi Algorithm

• The Viterbi algorithm is used to compute the most likely label
sequence in O(W ∗ T2) time, where T is the number of possible
labels (tags) and W is the number of words in the sentence.

• The algorithm sweeps through all the label possibilities for each word,
computing the best sequence leading to each possibility. The key that
makes this algorithm efficient is that we only need to know the best
sequences leading to the previous word because of the Markov
assumption.

Information Extraction

6

Computing the Probability of a Sentence and Tags

We want to find the sequence of tags that maximizes the formula
P(T1..Tn | wi..wn), which can be estimated as:

n∏

i=1

P(Ti | Ti−1) ∗ P(wi | Ti)

P(Ti | Ti−1) is computed by multiplying the arc values in the HMM.

P(wi | Ti) is computed by multiplying the lexical generation probabilities
associated with each word.

Information Extraction

7

The Viterbi Algorithm

Let T = # of tags W = # of words in the sentence

for t = 1 to T /* Initialization Step */
Score(t, 1) = Pr(Word1 | Tagt) * Pr(Tagt | φ)

BackPtr(t, 1) = 0;

for w = 2 to W /* Iteration Step */
for t = 1 to T

Score(t, w) = Pr(Wordw | Tagt) *
MAXj=1,T (Score(j, w-1) * Pr(Tagt | Tagj))

BackPtr(t, w) = index of j that gave the max above

Seq(W) = t that maximizes Score(t,W) /* Sequence Identification */
for w = W -1 to 1

Seq(w) = BackPtr(Seq(w+1),w+1)

Information Extraction

8

Assigning Tags Probabilistically

• Instead of identifying only the best tag for each word, another
approach is to assign a probability to each tag.

• We could use simple frequency counts to estimate
context-independent probabilities.

P(tag | word) = #times word occurs with the tag
#times word occurs

• But these estimates are unreliable because they do not take context
into account.

• A better approach considers how likely a tag is for a word given the
specific sentence and words around it!

Information Extraction

9

An Example

Consider the sentence: Outside pets are often hit by cars.

Assume “outside” has 4 possible tags: ADJ, NOUN, PREP, ADVERB.
Assume “pets” has 2 possible tags: VERB, NOUN.

If “outside” is a ADJ or PREP then “pets” has to be a NOUN.
If “outside” is a ADV or NOUN then “pets” may be a NOUN or
VERB.

Now we can sum the probabilities of all tag sequences that end with
“pets” as a NOUN and sum the probabilities of all tag sequences that end
with “pets” as a VERB. For this sentence, the chances that “pets” is a
NOUN should be much higher.

Information Extraction

10

Forward Probability

• The forward probability αi(m) is the probability of words w1...wm with wm having tag
Ti.

αi(m) = P (w1...wm & wm/Ti)

• The forward probability is computed as the sum of the probabilities computed for all
tag sequences ending in tag Ti for word wm.

Ex: α1(2) would be the sum of probabilities computed for all tag
sequences ending in tag #1 for word #2.

• The lexical tag probability is computed as:

P(wm/Ti | w1...wm) =
P (wm/Ti,w1...wm)

P (w1...wm)

which we estimate as:

P(wm/Ti | w1...wm) = αi(m)
T∑

j=1

αj(m)

Information Extraction

11

The Forward Algorithm

Let T = # of tags W = # of words in the sentence

for t = 1 to T /* Initialization Step */
SeqSum(t, 1) = Pr(Word1 | Tagt) * Pr(Tagt | φ)

for w = 2 to W /* Compute Forward Probs */
for t = 1 to T

SeqSum(t, w) = Pr(Wordw | Tagt) *∑

j=1,T

(SeqSum(j, w − 1) * Pr(Tagt | Tagj))

for w = 1 to W /* Compute Lexical Probs */
for t = 1 to T

Pr(Seqw=Tagt) = SeqSum(t,w)∑

j=1,T

SeqSum(j, w)

Information Extraction

12

Backward Probability

• Backward probability βi(m) is the probability of words wm...wN with
wm having tag Ti.

βi(m) = P(wm...wN & wm/Ti)

• The backward probability is computed as the sum of the probabilities
computed for all tag sequences beginning with tag Ti for word wm.

• The algorithm for computing the backward probability is analogous to
the forward probability except that we start at the end of the sentence
and sweep backwards.

• The best way to estimate lexical tag probabilities uses both forward
and backward probabilities:

P(wm/Ti) = (αi(m)∗βi(m))
T∑

j=1

(αj(m) ∗ βj(m))

