CS 6958
LECTURE 8
TRIANGLES, BVH

Last Time

derived ray-triangle intersection

clarification:
ray tracing inherently abstract in terms of object
specification
we can use any object once we define an

algorithm for intersecting it with a ray (and
computing localized normal direction)

Ray Tracing Algorithm

foreach frame
foreach pixel
foreach sample
generate ray
intersect ray with objects
shade intersection point

Ray Tracing Algorithm

foreach frame
foreach pixel
foreach sample
generate ray
[intersect ray with objects
shade intersection point

" foreach object
t new = object.intersect(ray)

~N

t closest = min(t_closest, t_new)/

Ray Tracing Algorithm

e
I/l Abstract Primitive class defining properties which are required for our ray tracer.
/Il For now, it specifies just ray-object intersection routine, but can be extended to
I/l support shadow rays, bounding volumes, etc
class Primitive {
public:
virtual bool Intersect(const Ray &ray) const = 0;

}

I/l Sphere primitive
class Sphere : public Primitive {
bool Intersect(const Ray &ray) const;

}

// Triangle primitive
class Triangle : public Primitive {
bool Intersect(const Ray &ray) const;

}

Ray Tracing Algorithm

I/l Abstract Primitive class defining properties which are required for our ray tracer.
/Il For now, it specifies just ray-object intersection routine, but can be extended to
I/l support shadow rays, bounding volumes, etc

class Primitive {

public: Others:
virtual bool Intersect(const Ray &ray) const = 0; * Torus

} * Cone / Cylinder

 Box/ Rectangle

/Il Sphere primitive * Extrusions

class Sphere : public Primitive { » Surfaces of revolution
bool Intersect(const Ray &ray) const; * Metaballs

} * Iso-surface

» Spline surfaces
« Subdivision surfaces
// Triangle primitive
class Triangle : public Primitive {
bool Intersect(const Ray &ray) const;

}

Ray Tracing Algorithm

I I ——————

Note! We can’t use inheritance, hence we
are restricted to a single primitive

Making Ray Tracing Faster

faster rays
packets (less overhead per ray, cache coherence)
CPU optimizations

fewer rays
adaptive super-sampling (less samples)

faster ray-primitive intersection tests

fewer ray-primitive intersection tests
acceleration structures

Which Operation Most Costly?

9|
foreach frame

foreach pixel
foreach sample
generate ray
[intersect ray with objects]
shade intersection point

Acceleration Structures

foreach frame
foreach pixel
foreach sample
generate ray
| traverse ray through acceleration structure |
shade intersection point

change O(n) to O(log n), n — objects in scene

intersecting ray with structure primitive must
be cheap

Acceleration Structures
IR e

Acceleration Structures

1 Grid

Acceleration Structures

o Grid
1 Octree

Acceleration Structures

o Grid
1 Octree

Acceleration Structures

o Grid
o Octree
o KD tree (K-dimensional)

A

Acceleration Structures

o Grid
o Octree
o KD tree (K-dimensional)

A

=
@

Acceleration Structures
B
o Grid
o Octree
0 KD tree (K-dimensional)
o BSP tree (Binary Space Partitioning)

Acceleration Structures
I
o Grid
o Octree
0 KD tree (K-dimensional)
o BSP tree (Binary Space Partitioning)
- BVH (Boundary Volume Hierarchy)

A

Acceleration Structures
N
o Grid
o Octree
0 KD tree (K-dimensional)
o BSP tree (Binary Space Partitioning)
- BVH (Boundary Volume Hierarchy)

Acceleration Structures
T
o Grid
o Octree
0 KD tree (K-dimensional)
o BSP tree (Binary Space Partitioning)
- BVH (Boundary Volume Hierarchy)

AT

Acceleration Structures
I
o Grid
o Octree
0 KD tree (K-dimensional)
o BSP tree (Binary Space Partitioning)
- BVH (Boundary Volume Hierarchy)

A

BVH Traversal - |ldea

A B
-

BVH Traversal - |ldea

A

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - |ldea

BVH Traversal - Pseudocode

- description is recursive, but

TPs have small stack memory, so manage it
ourselves

code will run faster

int stack[32]; // holds node IDs to traverse
int sp = 0; // stack pointer into the above

BVH Traversal - Pseudocode

current_node = root
while(true) {
if(ray intersects current_node) {
if(current_node._is_interior()) {
stack. push(current_node._right _child _id())
current_node = current_node._left_child_id()
continue
}
else
intersect all triangles in leaf
}
if(stack._is_empty())
break
current_node = stack._pop()

}

BVH Traversal - Optimizations

o traverse closer child first
1 don’t traverse subtree if closer hit found

A A

/

Axis Aligned Bounding Box

N
o Let’s try to derive an intersection test
- Box representation?

End

