
CS 6958

LECTURE 8

TRIANGLES, BVH

February 3, 2014

Last Time

 derived ray-triangle intersection

 clarification:

 ray tracing inherently abstract in terms of object

specification

 we can use any object once we define an

algorithm for intersecting it with a ray (and

computing localized normal direction)

2

Ray Tracing Algorithm

foreach frame

 foreach pixel

 foreach sample

 generate ray

 intersect ray with objects

 shade intersection point

3

Ray Tracing Algorithm

foreach frame

 foreach pixel

 foreach sample

 generate ray

 intersect ray with objects

 shade intersection point

4

foreach object

 t_new = object.intersect(ray)

 t_closest = min(t_closest, t_new)

Ray Tracing Algorithm

/// Abstract Primitive class defining properties which are required for our ray tracer.

/// For now, it specifies just ray-object intersection routine, but can be extended to

/// support shadow rays, bounding volumes, etc

class Primitive {

public:

 virtual bool Intersect(const Ray &ray) const = 0;

}

/// Sphere primitive

class Sphere : public Primitive {

 bool Intersect(const Ray &ray) const;

}

// Triangle primitive

class Triangle : public Primitive {

 bool Intersect(const Ray &ray) const;

}

5

Ray Tracing Algorithm

/// Abstract Primitive class defining properties which are required for our ray tracer.

/// For now, it specifies just ray-object intersection routine, but can be extended to

/// support shadow rays, bounding volumes, etc

class Primitive {

public:

 virtual bool Intersect(const Ray &ray) const = 0;

}

/// Sphere primitive

class Sphere : public Primitive {

 bool Intersect(const Ray &ray) const;

}

// Triangle primitive

class Triangle : public Primitive {

 bool Intersect(const Ray &ray) const;

}

6

Others:

• Torus

• Cone / Cylinder

• Box / Rectangle

• Extrusions

• Surfaces of revolution

• Metaballs

• Iso-surface

• Spline surfaces

• Subdivision surfaces

Others:

• Torus

• Cone / Cylinder

• Box / Rectangle

• Extrusions

• Surfaces of revolution

• Metaballs

• Iso-surface

• Spline surfaces

• Subdivision surfaces

Ray Tracing Algorithm

/// Abstract Primitive class defining properties which are required for our ray tracer.

/// For now, it specifies just ray-object intersection routine, but can be extended to

/// support shadow rays, bounding volumes, etc

class Primitive {

public:

 virtual bool Intersect(const Ray &ray) const = 0;

}

/// Sphere primitive

class Sphere : public Primitive {

 bool Intersect(const Ray &ray) const;

}

// Triangle primitive

class Triangle : public Primitive {

 bool Intersect(const Ray &ray) const;

}

7

Note! We can’t use inheritance, hence we

are restricted to a single primitive

Making Ray Tracing Faster

 faster rays

 packets (less overhead per ray, cache coherence)

 CPU optimizations

 fewer rays

 adaptive super-sampling (less samples)

 faster ray-primitive intersection tests

 fewer ray-primitive intersection tests

 acceleration structures

8

Which Operation Most Costly?

foreach frame

 foreach pixel

 foreach sample

 generate ray

 intersect ray with objects

 shade intersection point

9

Acceleration Structures

foreach frame

 foreach pixel

 foreach sample

 generate ray

 traverse ray through acceleration structure

 shade intersection point

 change O(n) to O(log n), n – objects in scene

 intersecting ray with structure primitive must
be cheap

10

Acceleration Structures

11

Acceleration Structures

 Grid

12

Acceleration Structures

 Grid

 Octree

13

Acceleration Structures

 Grid

 Octree

14

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

15

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

16

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

 BSP tree (Binary Space Partitioning)

17

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

 BSP tree (Binary Space Partitioning)

 BVH (Boundary Volume Hierarchy)

18

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

 BSP tree (Binary Space Partitioning)

 BVH (Boundary Volume Hierarchy)

19

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

 BSP tree (Binary Space Partitioning)

 BVH (Boundary Volume Hierarchy)

20

Acceleration Structures

 Grid

 Octree

 KD tree (K-dimensional)

 BSP tree (Binary Space Partitioning)

 BVH (Boundary Volume Hierarchy)

21

BVH Traversal - Idea
22

BVH Traversal - Idea
23

BVH Traversal - Idea
24

BVH Traversal - Idea
25

BVH Traversal - Idea
26

BVH Traversal - Idea
27

BVH Traversal - Idea
28

BVH Traversal - Idea
29

BVH Traversal - Idea
30

BVH Traversal - Pseudocode

 description is recursive, but

TPs have small stack memory, so manage it

ourselves

code will run faster

int stack[32]; // holds node IDs to traverse

int sp = 0; // stack pointer into the above

31

BVH Traversal - Pseudocode

current_node = root

while(true) {

 if(ray intersects current_node) {

 if(current_node._is_interior()) {

 stack._push(current_node._right_child_id())

 current_node = current_node._left_child_id()

 continue

 }

 else

 intersect all triangles in leaf

 }

 if(stack._is_empty())

 break

 current_node = stack._pop()

}

32

BVH Traversal - Optimizations

 traverse closer child first

 don’t traverse subtree if closer hit found

33

Axis Aligned Bounding Box

 Let’s try to derive an intersection test

 Box representation?

34

End

35

