SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing

Youngsam Shinf
Shihwa Lee!

Won-Jong Lee™
Seokyoon Jung'

TSAMSUNG Advanced Institute of Technology
$University of North Carolina at Chapel Hill

Jaedon Lee'
Hyun-Sang Park/!

Jin-Woo Kim* Jae-Ho Nah?
Tack-Don Han?

HYonsei University
INational Kongju University

Figure 1: Full ray traced (including shading and bilinear filtered texturing) scenes by our GPU on a FPGA platform: Ferrari (left, 210K

triangles) and Fairy (right, 170K triangles).

Abstract

Recently, with the increasing demand for photorealistic graphics
and the rapid advances in desktop CPUs/GPUs, real-time ray trac-
ing has attracted considerable attention. Unfortunately, ray tracing
in the current mobile environment is very difficult because of in-
adequate computing power, memory bandwidth, and flexibility in
mobile GPUs. In this paper, we present a novel mobile GPU archi-
tecture called SGRT (Samsung reconfigurable GPU based on Ray
Tracing) in which a fast compact hardware accelerator and a flex-
ible programmable shader are combined. SGRT has two key fea-
tures: 1) an area-efficient parallel pipelined traversal unit; and 2)
flexible and high-performance kernels for shading and ray genera-
tion. Simulation results show that SGRT is potentially a versatile
graphics solution for future application processors as it provides
a real-time ray tracing performance at full HD resolution that can
compete with that of existing desktop GPU ray tracers. Our sys-
tem is implemented on an FPGA platform, and mobile ray tracing
is successfully demonstrated.

CR Categories: [.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; 1.3.7 [Computer Graphics]:

Three-Dimensional Graphics and Realism—Raytracing;

Keywords: ray tracing, GPU, mobile

1 Introduction

Recently, mobile graphics have become increasingly important. A
variety of 3D graphics applications, including Uls, games, and en-
tertainment in embedded devices, such as smart phones, tablet PCs,

*e-mail:joe.w.lee @samsung.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

HPG 2013, July 19 — 21, 2013, Anaheim, California.

Copyright © ACM 978-1-4503-2135-8/13/07 $15.00

109

digital TVs, and consumer electronics, are being highlighted. In-
creased interest in mobile graphics drives manufacturers of appli-
cation processors (APs) [Exynos 2013] [Tegra 2013] [Snapdragon
2013] to invest more of their resources in GPUs [iPad4 2013].
These trends in mobile graphics will continue with the explosive
growth of the mobile market segment. In the near future, it will be
shown that the more realistic and immersive applications, such as
AR/MR, digital imaging, and natural user interfaces (NUIs), give a
better user experience by combining graphics and other technolo-
gies (i.e., vision, image, and camera) [Peddie 2011].

Ray tracing is a potential rendering technique for these future mo-
bile graphics applications. Geometry, material, and illumination
information will be captured from the objects in real worlds by the
3D camera of the future mobile devices [Goma 2011]. Captured in-
formation can be directly applied in a ray tracer because it is a phys-
ically based rendering algorithm. These ray-traced objects will be
naturally mixed with real-world objects and make the AR/MR ap-
plication more immersive [Kan and Jaufmann 2012]. In addition,
ray tracing can be suitable for a mobile display whose screen is rel-
atively small, because the first-order ray tracing performance scales
linearly with the number of screen pixels, not the number of scene
primitives [Spjut et al. 2012]. Furthermore, the ray tracing algo-
rithm has both control flow- and data parallel-intensive operations,
which can be appropriately distributed to the heterogeneous plat-
forms because the multi-/many-core CPUs/GPUs architecture will
be strengthened in the future mobile SoC environment [HSA 2013].

However, there has been minimal research on real-time ray tracing
in the mobile environment [Spjut et al. 2012] [Kim et al. 2012a], in
contrast to the many research studies that have addressed the desk-
top CPUs/GPUs/MIC platform. Though mobile graphics capabil-
ities and performance have advanced considerably in recent years,
real-time ray tracing in current mobile GPUs is very difficult for the
following reasons. First, the floating-point computational power is
inadequate. Real-time ray tracing (at 30 fps) a real-world applica-
tion at 720p HD resolution (1280x720) requires a performance of
at least 300 Mrays/s (about 1~2 TFLOPS) [Slusallek 2006], but the
theoretical peak performance of the current flagship mobile GPU is
no more than 378 GFLOPS (ARM Mali T678 [ARM 2013a]). Sec-
ond, the execution model of the mobile GPU is the SIMD-based
multithreading or SIMT, which is not suited for incoherent ray trac-

ing, because it causes branch and memory access divergence [Grib-
ble and Ramani 2008] [Kim et al. 2012a]. Third, the memory band-
width can constitute a bottleneck, because the external DRAM is
not dedicated for the GPUs, but has to be shared with CPUs in the
mobile SoC. According to recent results of the OpenCL ray trac-
ing benchmarks [KISHONTI 2013], the ray tracing at 2048 x 1024
resolution on Google Nexus 10 (Exynos 5250, ARM Mali T604
GPU) and SonyXperia Z (Qualcomm Snapdragon S4 Pro, Adreno
320 GPU) recorded the lowest scores.

In this paper, we propose a new mobile GPU architecture, which is
called SGRT (Samsung reconfigurable GPU based on Ray Tracing).
SGRT can resolve the above problems and realize real-time mobile
ray tracing by combining two components. First, it has a fast com-
pact hardware engine (3.32 mm? per core, 65 nm) that accelerates
the traversal and intersection (T&I) operations, which are compu-
tationally dominant in ray tracing. Our hardware, called the T&lI
unit, is based on a T&I engine investigated in [Nah et al. 2011];
however, the current T&I unit differs in that it consists of newly
proposed parallel-pipelined traversal units, which can reduce un-
necessary data transfer between pipeline stages, and improve per-
formance. The new T&I unit allows efficient incoherent ray tracing
by combining the proposed new feature and the high performance
features, such as the MIMD execution model and ray accumula-
tion unit (RAU), proposed in [Nah et al. 2011]. Second, it em-
ploys a flexible programmable shader called SRP (Samsung Recon-
figurable Processor), which supports software ray generation and
shading (RGS), which was developed in [Lee et al. 2011]. Unlike
the conventional mobile GPU, the SRP can support both control-
flow and highly parallel data processing, which makes the applica-
tion of high performance RGS kernels possible. Although we limit
the range of this paper to the static scene, the design of the SGRT
architecture is such that it can be extended to deal with dynamic
scenes. The concept of SGRT was previously proposed in an ex-
tended abstract [Lee et al. 2012].

The performance of SGRT is evaluated through cycle-accurate sim-
ulations, and the validity of the architecture is verified by FPGA
prototyping. The experimental results show that SGRT can pro-
vide real-time ray tracing at full HD resolution (Fairy scene, 34 fps
at 4 SGRT cores (500 MHz T&I unit and 1 GHz SRP)) and com-
pete with not only the mobile ray tracing processor but also the
desktop GPU/MIC ray tracer in terms of the performance per area.
Moreover, the full SGRT system is implemented at the Verilog/RTL
level, and demonstrated on an FPGA platform as a mobile ray trac-
ing GPU.

To summarize, the main contribution of this paper are:

e A new T&I hardware architecture based on an area-efficient
parallel pipelined traversal unit.

e High performance RGS kernels efficiently mapped onto a pro-
grammable shader.

e Implementation of the full system at the RTL level and
demonstration of a mobile ray tracing GPU on an FPGA.

2 Related Work

In this section, we describe the research related to SGRT, which
comprises studies on parallel ray tracing, dedicated hardware, and
mobile ray tracing.

2.1 Parallel ray tracing

A variety of parallelizing approaches has been tried to acceler-
ate the rendering speed efficiently in several platforms, such as

110

CPUs/GPUs/MIC. Ernst [2012] classified these approaches into
the three types in terms of the object to be parallelized when the
ray-box intersection is performed. First, the multiple rays to be
intersected to a single box can be parallelized in SIMD fashion,
which is called packet tracing. The packet tracing approach has
been widely utilized by employing CPU’s SIMD intrinsics [Wald
2007] or GPU’s SIMT multithreading [Garanzha and Loop 2010],
but it is not suitable for the secondary rays due to the issue of
branch divergence. In order to overcome this drawback, a ray re-
ordering, sorting, or scheduling algorithm to improve ray coherency
has to be applied [Garanzha and Loop 2010]. Second, a single ray-
based SIMD traversal approach, multi-BVH, can also be used [Ernst
2008] [Tsakok 2009]. Multi-BVH parallelizes not the rays but the
boxes of the nodes in the BVH tree. This method is a better solu-
tion for incoherent rays and scales well with larger SIMD widths.
However, the complexity of both the tree structures and build algo-
rithm can be increased. Third, the intersection tests of the single ray
and box can be parallelized independently. This can be done in an
MIMD architecture. Each ray is treated as a separate thread in this
architecture, which means that improved hardware utilization can
be obtained when the incoherent rays are processed. TraX [Spjut
et al. 2009], MIMD threaded multiprocessor [Kopta et al. 2010],
T&lI engine [Nah et al. 2011], and this paper belong in this cate-

gory.
2.2 Dedicated hardware

To date, various dedicated hardware research studies have been con-
ducted on high performance ray tracing. SaarCOR [Schmittler et al.
2004] was the first ray tracing dedicated pipeline, which was com-
posed of a ray generation/shading unit, 4-wide SIMD traversal unit,
list unit, transformation unit, and intersection test unit. Woop et
al. [2005] proposed a programmable RPU architecture, in which
the ray generation, shading, and intersection were executed on a
programmable shader. Later, adding a node update unit to the RPU
architecture, they proposed the D-RPU architecture for dynamic
scenes [Woop 2007]. SaarCOR, RPU, and D-RPU are all based
on packet tracing, which can lower the performance in the case of
incoherent rays due to the poorer SIMD efficiency, as mentioned
in the previous section. To resolve this problem and obtain an im-
proved SIMD utilization, Gribble and Ramani [2008] proposed a
wide-SIMD ray tracing architecture with a stream filter that can fil-
ter the active rays in a ray packet during each step. In contrast,
TRaX [Spjut et al. 2009] and MIMD TM [Kopta et al. 2010] used
single ray thread execution rather than packet tracing, employing a
small and lightweight thread processor and shared functional units,
and shared caches. The T&I engine [Nah et al. 2011] is dedicated
hardware for accelerating the T&I operation, which is composed of
traversal units using an ordered depth-first layout and three-phase
intersection units; each unit commonly includes a ray accumula-
tion unit for latency hiding. However, the target of the above ar-
chitectures is not the mobile but the desktop environment. Finally,
the CausticRT [2013] is commercial ray tracing hardware targeted
desktop to mobile platforms, which has been released in the market,
but whose detailed architecture has not been published.

2.3 Mobile ray tracing

Relatively little research has been carried out on mobile ray trac-
ing. Nah et al. [2010] implemented an OpenGL |ES-based ray tracer
on existing mobile CPUs and GPUs. Their approach is a hybrid
method to assign the tasks for kdtree construction to CPUs, and the
tasks for ray traversal and shading to GPUs. However, the rendering
performance was very limited (predicted to be 1~5 fps on mobile
CPUs and GPUs). In contrast, Spjut et al. [2012] proposed a version
of the MIMD TM [Kopta et al. 2010] in which the number of thread

multiprocessors and active threads was reduced, making it suitable
for mobile devices. Kim et al. [2012a] also proposed a dedicated
multi-core processor for mobile ray tracing, which can be config-
ured to both SIMT and MIMD modes. However, the above archi-
tectures could not provide a sufficiently high performance (less than
30 Mrays/s) for real-time ray tracing of real-world applications.

3 Proposed System Architecture

In this section, we describe the overall architecture of the proposed
ray tracing system. First, we present the basic design decision and
review the SGRT system organization, and then explain the T&I
unit and the SRP, the core components of the SGRT, in detail.

3.1 Basic design decision

Mobile Computing Platform: We designed our system using a
mobile-friendly strategy. The mobile computing platform [Exynos
2013] [Tegra 2013] [Snapdragon 2013] integrates multi-core CPUs,
many-core GPUs, and dedicated hardware circuits into a single sys-
tem. The system bus and shared caches minimize communication
costs. In order to utilize this heterogeneous computing platform,
the ray tracing algorithm is carefully analyzed in terms of com-
puting, memory access pattern, and power consumption, and then
partitioned into hardware and software.

Dedicated Hardware Units: The T&I operations are the most
resource-consuming stages. Hardwired logic is appropriate because
T&I are repeating operations and require low-power consumption.
In general, fixed function hardware increases computational perfor-
mance by exploiting hardwired or customized computation units,
customized wiring/interconnect for data movement, reduced un-
used resources, and removed instruction fetching/decoding over-
head at some cost in general-purpose processor. In addition, this
approach is more advantageous in terms of energy efficiency which
is a critical issue in mobile platfom. Due to battery capacity and
heat dissipation limits, for many years energy has been the fun-
damental limiter for computational capability in mobile platform,
which might include as many as 10 to 20 accelerators to achieve a
superior balance of energy efficiency and performance. According
to [Borkar and Chien 2011] [Hameed et al. 2010], units hardwired
to a particular data representation or computational algorithm can
achieve 50~500x greater energy efficiency than a general-purpose
register organization. Therefore, we designed a T&I unit with a
fixed pipeline.

Programmble Shader: We assign the RGS operations to the pro-
grammable shader of existing GPUs in the mobile computing plat-
form, because the RGS requires a certain degree of flexibility to
support various types of ray and shading algorithms.

Acceleration Structure: We selected the BVH tree as the accel-
eration structure for various reasons. First, it enabled us to sim-
plify the hardware structures. In contrast to the kdtree, where a
primitive might be included in multiple leaf nodes, the BVH is
an object hierarchy where a primitive is included in a leaf node.
Therefore, the BVH negates the need for LIST units [Schmittler
et al. 2004] [Woop et al. 2005] [Nah et al. 2011] to manage primi-
tives. Second, even though the current SGRT was tested using static
scenes, we selected the BVH for our future architecture because it
can support dynamic scenes.

Static and Dynamic Tree Build: We assigned the tree build oper-
ation to multi-core CPUs that fully support control-flow and multi-
level caches, because the tree build is an irregular operation that
includes sorting and random memory access. Current our GPU is
tested using static scenes. However, we designed our architecture

111

SGRT Core 1
SRP Internal SRAM | [Ray Dispatch T&l Unit
ARM N Unit
Coretex-A15 -
Traversal Intersection
Core 1 Texture Unit] | Coarse Grained Unit 1 Unit
Cache (L1) Cache (L1) Rew;:‘rga‘;’ab'e Cach: (%)) Cache (L1)

Cache (L2)

D-Cache (L1) Cache (L2)

AXI System Bus

’ External DRAM l

Figure 2: Overall architecture of the proposed ray tracing system.

with the intention of extending it to handle dynamic scenes, as we
mentioned in the introduction. For rendering dynamic scenes, the
tree has to be updated in every frame. If the tree construction is per-
formed by CPUs, the bus between the CPUs and the SGRT cores
can become a bottleneck. This problem might be alleviated by an
asynchronous BVH build [Wald et al. 2008] in combination with
a BVH tree refit, because the tree build and transfer can be hid-
den during the rendering with the refitted trees. The performance
of mobile CPUs (multi-core ARM CPUs) is sharply increasing (the
number of cores and clock frequency) and SIMD intrinsics, such as
NEON [ARM 2013b], are already available. Therefore, we expect
that real-time tree build on mobile CPUs will soon be realized in
our future research.

Single Ray-based Architecture: As in [Nah et al. 2011], our T&I
unit is based on single-ray tracing because it is more robust for in-
coherent rays than SIMD packet tracing. According to [Mahesri
et al. 2008], SIMD architectures showed a poorer performance per
area than MIMD architectures. Therefore, our method processes
each ray independently via a different data path, as in MIMD ap-
proaches.

3.2 SGRT system organization

Figure 2 illustrates the overall architecture of the proposed system,
which is composed of multi-core CPUs and the SGRT cores. Each
SGRT core has a T&I unit and SRP. The goal of the proposed sys-
tem is to utilize the resources of mobile computing platforms effi-
ciently and achieve a higher performance per area, and finally pro-
vide real-time ray tracing in the mobile environment.

Ray traversal and intersection tests are performed by the T&I unit.
The T&I unit consists of a ray dispatch unit (RD), multiple traversal
unit (TRV), and an intersection unit (IST). We limit the primitive
type to triangle to allow a simple hardware structure, and employ
Wald’s intersection method [2004], which is the most cost-effective
algorithm [Nah et al. 2011].

Unlike previous traversal architectures [Nah et al. 2011], the new
TRV is a parallel pipelined architecture that splits a single deep
pipeline into three different sub-pipelines to reduce the unnecessary
transferal of the ray between pipeline stages. Through this architec-
ture, the ray can traverse a tree with minimized latencies and higher
cache locality. The TRV architecture is described in detail in sec-
tion 3.3.1. The abstract of this parallel pipelined TRV study was
previously announced in [Kim et al. 2012b].

RGS are performed by the programmable shader. We employed the
SRP, which is the shader core of the GPUs developed in [Lee et al.
2011]. The SRP consists of a VLIW (Very Long Instruction Word)

From SRP.
(Rays)

Ray Dispatch Unit

TRV Unit [[[L gl
gl T T T
LI I] L2) ¥
[Input Buffer | [Input Buffer | [Input Buffer | [nput Buffer |
L1, L2
“ T el
o) | |

: '

l
To SRP i

(Hit points) Input Buffer

IST Unit

Figure 3: Internal architecture of the T&I unit.

engine, which supports control-flow, and a CGRA (Coarse Grained
Reconfigurable Array), which is responsible for highly parallel data
processing. RGS kernels are efficiently mapped onto this CGRA by
using high performance features, such as software pipelining and
SIMD, and multiple rays are executed in parallel. The structure is
described in detail in section 3.4.

TRVs and IST require data fetching. For efficient memory access,
we assigned a level-one (L.1) cache memory and a ray accumulation
unit (RAU) [Nah et al. 2011] to each pipeline. The RAU is used to
prevent pipeline stall by storing rays that induce a cache miss, and
therefore efficient concurrent processing of multiple rays in pipeline
stages can be achieved with this unit. The level-two (L2) cache for
multiple TRVs between off-chip memory and the L1 cache reduces
memory traffic and contributes to scalable performance, as in [Nah
et al. 2011]. The CPU, T&I Unit, and SRP are connected by an
AXI system bus.

The T&I unit and the SRP can communicate through not an AXI-
system bus but a FIFO-based dedicated interface, because using
an external DRAM as the interface would be a bandwidth bur-
den for the memory system. Hence, we configure on-chip FIFO
buffers in the SRP to store 64 rays and hit points for ray buffers
(ray generation to T&I) and hit buffers (T&I to shading). To allow
concurrent execution of the shading kernel and T&I unit, the hit
buffers are configured as double buffers. Similarly, the ray buffers
are configured as triple buffers for concurrent execution of the pri-
mary/secondary ray generation kernels and T&I unit. The size of
aray and a hit point is 64 bytes and 24 bytes, respectively. There-
fore, a total of 12 KB (64 xX(2x64 bytes+3x24 bytes)) of SRAM
is required.

3.3 Dedicated hardware for T&l

Figure 3 shows the detailed T&I architecture for performing the
traversal and intersection operation. The T&I unit consists of a ray
dispatch unit (RD), four traversal units (TRV), and an intersection
unit (IST). Each unit is connected by an internal buffer that passes
aray from one unit to the others. The RD fetches a ray from the ray
buffer and first dispatches it to an idle TRV. Because only one ray
can be supplied for each cycle, rays are supplied to the TRVs in a
FIFO order. The ratio of the TRV to the IST is dependent on the ray
and scene characteristic. We found that a ratio of 4:1 was appro-
priate after testing with various scenes, as proposed in [Schmittler
et al. 2004].

BVH tree traversal is performed by TRV, each of which consists of
a memory processing module (input buffer, RAU, L1 cache, short
stack) and computation pipeline. The output of the TRV pipeline

112

Ray

Dispatch Ray

Unit ST Dispatch
1 Feedback Unit IslT
Input Buffer
Input Buffer
Ray Accumulation Unit Cache N
, enes [oG]
SinglelPipeIine
T
Leaf Node Test Parallel [Pipelines l
Ray-AABB Test FIF FO FIFO
Leaf Node Ra AABB
Stack Operation <- Test Yrest Opse‘factll(on
Wi

Feedback IST Shader

ST Shader

Figure 4: The conventional single- (left) and our parallel- (right)
pipelined traversal unit.

branches into three paths: a feedback loop path to the input buffer
for iterative visits to inner nodes; an output path to send a ray to the
IST when a ray reaches a leaf node; and an output path to send a ray
to the SRP when a ray finishes BVH tree traversal. The computation
pipeline of the TRV consists of 4 floating-point adders, 4 floating-
point multipliers, and 11 floating-point comparators.

The ray-triangle intersection test is performed by the IST, which,
similarly to TRVs, consists of a memory processing module (input
buffer, RAU, L1 cache) and computation pipeline. The output of the
IST pipeline branches into two paths: a feedback loop path to the in-
put buffer for iterative testing of triangles in the same leaf node; and
an output path to send a ray to the TRV for visiting the next BVH
nodes. According to Wald’s intersection algorithm [2004], the com-
putation pipeline of the IST consists of 12 floating-point adders,
10 floating-point multipliers, 1 reciprocal unit, and 5 floating-point
comparators.

3.3.1 Parallel pipelined traversal unit

We propose a new traversal unit based on parallel pipelines. Fig-
ure 4 compares the conventional single pipeline [Nah et al. 2011]
and proposed parallel pipelines. The traversal operation con-
sists of three sub-pipelines: 1) Fetching a tree node and testing
whether the node is a leaf or inner node (TRV_PRE); 2) testing
the ray-AABB intersection (TRV_AABB); and 3) the stack opera-
tion (TRV_POST). A conventional single deep pipeline is designed
to connect these operations serially to increase the throughput of
ray processing per unit time. However, traversal operations involve
non-deterministic changes in the states of a ray. For example, if
the result of TRV_PRE is inner node, then the next sub-pipeline
TRV_AABB is executed. If the result of TRV_PRE is leaf node, the
corresponding ray should be transferred to the IST without execut-
ing TRV_AABB and TRV_POST. To handle these branching situa-
tions, a single deep pipeline has to bypass the rays to inactive the
sub-pipelines without executing any operations, thereby increasing
the overall latency.

The right-hand side of Figure 4 shows the parallel traversal unit
proposed to overcome the abovementioned problems. The sub-
pipelines for the three stages are independent, and the outputs con-
stitute a crossbar, through which the rays are fed back to the input
stage. The crossbar does need to be connected fully, but only to
the paths for each branching between the sub-pipelines. Therefore,
only minimal hardware needs to be added to construct the paral-
lel pipelines. After each operation, the processed ray is fed back
through the output crossbar or passed on for shading or the inter-
section test, according to the next operation to be processed. Unlike
the existing single-pipeline structure, the proposed structure is able

to reduce the transfer of inessential data, because the ray is im-
mediately fed back to its sub-pipelines when its state is changed.
Furthermore, the congurability of this structure enables us to im-
prove the performance in a cost-effective manner via selective sub-
pipeline plurality under high usage.

The proposed TRV has a purpose similar to that of the shader ar-
chitecture of modern GPUs [ARM 2013a]. Both our approach and
GPUs aim to reduce the thread (ray in our case) latency and im-
prove throughput. The GPU shader architecture takes advantage of
multithreading, which issues each thread to the appropriate func-
tional unit according to the instruction to be executed. Dedicated
hardware logic is equipped to schedule the instructions and threads
for latency hiding and dependency resolving. One way in which
our approach differs from others is that our TRV does not need
scheduling logic, because the ray can be routed to the destination
immediately after the execution of the sub-pipelines.

3.4 Reconfigurable processor for RGS

In order to support the flexible RGS operation, we utilize a pro-
grammable shader called SRP (Samsung Reconfigurable Proces-
sor). The SRP is variously used in OpenGL|ES-based mobile GPUs
[Lee et al. 2011] and a multimedia DSP [Song et al. 2012]. The
multimedia SRP has already been verified by its inclusion in com-
mercial application processors [Exynos 2013]. The mobile GPU
target SRP core shows a theoretical peak performance of 72.5
GFLOPS per core (1 GHz clock frequency, 2.9 mm? at 65 nm),
which is already comparable with commercial mobile GPUs [ARM
2013a]. The SRP is a flexible architecture template that allows a
designer to generate different instances easily by specifying differ-
ent configurations in the target architecture. The SRP also supports
full programmability (standard C language) to help application de-
velopers develop their target application easily. In this section, we
briefly describe the SRP architecture and its programming model,
and then explain the RGS kernels that are efficiently mapped onto
the SRP.

3.4.1 CGA/VLIW model

Figure 5 depicts the SRP architecture, which includes a tightly cou-
pled very long instruction word (VLIW) engine and coarse-grained
reconfigurable array (CGRA). Integrating the VLIW engine and the
CGRA in a single architecture has an advantage as compared to the
state-of-the art DSP and shader of mobile GPUs. The VLIW en-
gine is designed for general-purpose computations, such as func-
tion invocation and branch selection. In contrast, the CGRA is in-
tended only for efficiently executing the computation-intensive ker-
nels, and therefore it can accelerate the rest of the application like a
coprocessor. Communication between the processor and the config-
urable accelerator results in programming difficulties and commu-
nication overhead, which can greatly reduce overall performance.
Combining the host processor and the accelerator leads to simpli-
fied programming, and removes the communication bottleneck. In
addition, the CGRA includes components similar to those used in
VLIW engines.

The components inside in FU, Figure 5, include: the local buffer,
the ALU, input and output multiplexers and a RF. The local data
storage is beneficial for code mapping as several iterations of local
data processing can be executed in a single FU without the need
of transporting intermediate data through the interconnect. Beside
of power aspects this virtually increases the feasible depth of data
paths.

The kernels can be optimally scheduled for the VLIW/CGRA at
compile time. The compilers core technology is a modulo schedul-

113

‘ Scratchpad Memory (SRAM)

}<—> T&I Unit

Application
code
4:| Control proc.
for (=)
AL

)
1 control proc.

e

Host

Inst i i
nstruction
Cache " ‘

VLIW
Central RF (Register Files)

S

bl hul

i a! E
]

bl bl

Data proc.

Loop

Texture Unit

33 N { Loop Data proc.
ST N BN
'C———— Control proc.
N[for ()
FU o FU
‘V - I L Data proc.
oop
CGRA
T T
Co’\r;lfiguration ‘ ‘ Data Cache ‘
lemory

From central RF/FUs
To central RF

MUX

Buffer

SRC 1
Functional Unit
DST

Internal Register

To FUs

f

From
configuration
memory

Figure 5: The SRP architecture including VLIW/CGRA and the
mapping of application codes (up), and a functional unit in CGRA
(down).

ing algorithm [Mei et al. 2003], which can map loops onto the SRP
in a highly parallel way. The objective of modulo scheduling, a
widely used software pipelining technique, is to execute multiple
iterations of the same loop in parallel. To achieve this, the com-
piler constructs a schedule for one loop iteration such that this same
schedule repeats at regular intervals with respect to intra- and inter-
iteration dependences and resource constraints. The initiation inter-
val shows the number of cycles that elapse before the next iteration
of the loop starts executing.

Instruction sets for executing kernels, such as arithmetic (SIMD
and scalar), special function, and texture operations, are properly
implemented in each functional unit in the VLIW/CGRA. A special
interface to invoke external hardware can be used for driving the
texture mapping unit. The SRP has an internal SRAM (240 KB)
for stream data and a data cache (4 KB) for random accessible data.

3.4.2 Compilation and simulation

Figure 6 shows our complier and simulation framework. A design
starts from a C-langurage description of the application. We write a
ray tracing application composed of the non-kernel and the kernel
codes. Our compiler front-end parses these sources and generates
IR (Intermediate Representations) codes suited for VLIW proces-
sor. The compiler outputs also profiling information on all func-
tion calls in the source. It uses symbolic instructions and flattened
function calls. However, loop descriptions are preserved. These IR
codes are then converted into the second XML-based intermediate
codes, DRE. The resulting DRE files are split up in two parts: 1)
Non-kernel codes to be optimized for the VLIW engine, 2) kernel
codes to be optimized for the CGA datapath.

C source code

compiler front-end

Ircode to dre

Architecture
description

parser

Architecture

abstraction

Kernel (CGRA)

Unscheduled DRE
oY % remaccom
pre-CGA

code select]
[Unscheduled DRE | : [Unschedued DRE]

lVUWscheduler |
| 1

l register allocator :

[viw scheduled DRE | I

L _ _ ___ BY:I
csim

Simulator code

Non-kernel (VLIW)

l CGA scheduler

CGA scheduled DRE |

VLIW scheduled DRE

l register allocator
[coAscheduled DRE |

host compiler (g++) Built-in simulator source
Simulator executable

Figure 6: Overall compiler/simulator framework for SRP.

Non-kernels and kernels are manipulated by several mudules of
our SRP compiler. The SRP compiler outputs the scheduled DRE
files through a few compilation steps such as code selection, ILP
scheduling, register allocations and modulo schduling. For further
processing of the code, the target architecture is described in an
XML-based language. The parser and abstraction step transform
the architecture into an internal graph representation. This is also
taken as an input in each compilation step.

We develop a source generator, called csim, which is a meta-
program to generate C++ cycle accurate simulator using the archi-
tecture abstraction and the scheduled DRE files as inputs. After
the host compiler, g++, compiles these generated simulator sources
with built-in codes, the executable can be obtained. Finally, design-
ers can use this simulator to get quality metrics for the architecture
instance under test.

3.4.3 High performance kernels for RGS

There are certain key points for achieving high performance in
the SRP parallel computing model, similarly to CUDA [2013] and
OpenCL [2013]. 1) Launch a kernel with a loop having a mas-
sive number of iteration counts, which can involve enough steady
states of software pipeline to hide the overhead of the prolog/epilog.
However, the iteration counts of a loop (i.e., the number of stream
data to be processed in a loop) can be limited by the available size of
the internal SRAM of the SRP. Therefore, the appropriate loop size
has to be selected. 2) Avoid a branch in the kernel loop that is to be
scheduled by the modulo scheduler. When the control flow diverges
in a kernel loop due to a conditional branch, the compiler serial-
izes each branch path taken, which can lead to performance loss.
From the perspective of kernel programming, designing an algo-
rithm with a simple control structure that minimizes unpredictable,
data-dependent branches can enhance the performance markedly.
3) Aggressively utilize the SIMD intrinsics that are supported by the
SRP instruction set architecture.

According to point 1), we choose the size of the kernel loop (i.e., the
size of a ray packet) to be 64, according to the results of various ex-
periments and speculative consideration of both CGRA efficiency
and SRAM cost. According to point 2), we simplify the overall al-
gorithm to control-flow-free, and therefore ray tracing recursion is
converted to iteration loops based on the job-queue controlled by
a simple scheduler. We implement the optimized RGS kernels as
follows.

114

Hit point & ray

| Update colors | | Update colors | | Compute normal vectorsl | Update colors

Determine secondary ray
generation

Generate refraction rays
Generate reflection rays

Texture mapping
Lighting & Update colors
Generate shadow rays

|:| CGRA kernels

Figure 7: Execution flow of RGS kernels.

Shading kernels: Several branches can occur in the shading opera-
tion according to the types of hit points and rays. According to point
2), these should be appropriately classified and then partitioned into
control-flow statements and kernel blocks. Control flow statements
can be handled by the VLIW engine, and the kernels are executed
in a CGRA. The type of ray determines whether a secondary ray is
generated. The type of secondary ray to be generated also depends
on the types of hit object material. Therefore, we split the original
loop in the shading function into small loops for each branch, which
became kernel loops, as shown in Figure 7. To reduce classification
overhead in the SRP, the T&I classifies the hit points according to
the types of ray and hit results. The SRP executes different kernels
for these four cases (shadow ray & hit, shadow ray & no hit, other
ray & hit, and other ray & no hit). The case of other ray & hit is
the most computation-intensive. This case can be classified into the
several sub-cases: 1) Compute normal vector in barycentric coordi-
nates; 2) determine whether the secondary ray has to be generated
for each primary ray; 3) texturing; and 4) lighting computation. For
these sub-cases, kernels also are implemented and invoked in order
by the CGRA.

Ray generation kernels: These kernels are intuitively imple-
mented because ray generation does not involve any branches. Ac-
cording to the type of ray to be generated (primary, shadow, reflec-
tion, and refraction), different kernels are executed accompanied by
shading kernels.

According to point 3), every kernel utilizes the SIMD paralleliza-
tion. A 4-way SIMD intrinsic for arithmetic, logical, and relative
operation is supported by the SRP, like the commercial GPUs. The
RGS is an SIMD-friendly operation (having vector components for
position (xyzw) and color (rgba)), and therefore the operations in
RGS kernels are vectorized with these intrinsics. This is very sim-
ilar to the conventional vertex and pixel shader in a modern GPU
program.

4 Results and Analysis

In this section, we describe the functional validation and perfor-
mance evaluation of SGRT and the implementation of our system
on an FPGA. First, we estimate the hardware complexity and area
consumption and analyze the simulation results, and then, finally
demonstrate the FPGA prototype.

Table 1: Complexity of a T&I unit by the number of floating-point
units and the required on-chip memory (ADD : adder, MUL : mul-
tiplier; RCP : reciprocal unit, CMP : comparator, RF : register file,
L1 : LI cache, L2 : L2 cache).

ADD MUL RCP CMP | RF(KB) LI1(KB) L2(KB)
4 TRV 24 24 44 49 64 128
1IST 12 10 1 5 8 128
Total 36 34 1 49 57 192 128

Table 2: Area estimation of a T&I unit (65 nm process, FP : floating
point, INT : integer, OH : overhead).

Funtional Area Total area | Memory| Area Total area
units (mm?2) # (mm?) | units (mm2) # (mm?)
FP ADD 0.003 36 0.11 | TRV LI 0.06 4 0.24
FP Mul 0.01 34 0.34 | TRV L2 064 1 0.64
FP RCP 011 1 0.11 | ISTL1 064 1 0.64
FP CMP 0.00072 49 0.04 | 4K RF 0.019 15 0.29
INT ADD | 0.00066 20 0.01

Control/Etc. 0.14

Wiring O/H 0.77
Total 3.32

4.1 Hardware complexity and area estimation

Tables 1 and 2 show the hardware complexity and estimated area
for the T&I unit, respectively. The hardware setup was structured
as follows. TRVs have a 16 KB 2-way L1 cache, and a 128 KB
2-way L2 cache divided into eight banks. The IST has a 4-way
128 KB L1 cache. The block size of all caches is 64 bytes. Resister
files (RF) are assigned to in-out buffers, RAUs, traversal stacks, and
pipeline latches.

We carefully estimated the area of the T&I unit, in a way similar to
that used in [Nah et al. 2011]. We assumed 65 nm technology and
obtained the area estimates for arithmetic units and caches from
[Kopta et al. 2010] and CACTI 6.5 [Muralimanohar et al. 2007].
Stack operations, pipeline controls, RAU controls, and other con-
trols require hardware resources. We estimated the area of this part
to be 23.3% of the total area for arithmetic units.

Figure 8: Test scenes: Sibenik with primal rays, Fairy with ambient
occlusion rays, Ferrari with forced specular rays (2-bounce), and
Conference with diffuse inter-reflection rays.

115

Table 3: Simulation results of RGS kernels executed on SRP (4
cores at 1 Ghz clock, cache size : texture (32KB), data (4KB), FSR
: forced specular ray (2 bounce)).

Ray Cache hit rate (%) | Bandwidth | Performance
Test scene | type Texture Data (GB/s) | (Mrays/sec)
Sibenik Primary - 96.76 0.5 182.11
(80K tri.) FSR - 91.24 1.9 172.25
Fairy Primary 93.25 96.87 0.8 175.66
(179K tri.) | FSR 81.49 9491 1.9 147.45
Ferrari Primary 86.12 98.09 0.6 183.28
(210K tri.) | FSR 75.95 95.71 2.0 163.67
Conference | Primary - 98.44 0.2 198.32
(282K tri.) | FSR - 95.72 0.8 158.79

Table 4: Performance comparison of single pipelined (SPTRV) and
parallel pipelined traversal unit (PPTRV).

Ray Average steps Mrays/sec Ratio to
Test scene | type SPTRV PPTRV | SPTRV PPTRV | SPTRV
Sibenik Primary | 61.30 23.12 27 33 1.24
(80K tri.) AO 36.55 14.87 48 56 1.15
Diffuse 81.62 29.93 11 15 1.40
Fairy Primary | 70.86 28.02 22 28 1.27
(179K tri.) | AO 31.53 12.43 52 62 1.20
Diffuse 51.72 18.99 19 24 1.31
Ferrari Primary 68.86 25.52 23 29 1.26
(210K tri.) | AO 30.64 11.32 54 64 1.18
Diffuse 9224 59.20 20 25 1.25
Conference | Primary 44.66 15.54 36 46 1.30
(282K tri.) | AO 17.23 5.88 99 121 1.23
Diffuse 43.06 14.59 33 44 1.35

We obtained this percentage from the ratio of the front-end area to
that of the execution area (0.233:1) in [Mahesri et al. 2008]. In addi-
tion, wiring overhead due to place and route, choice of logic gates,
and other optimizations, should be taken into account. Woop [2007]
and Mahesri [2008] used 29-33% wiring overhead, and therefore,
we added a 30% one-level overhead. From this assumption, we fi-
nally obtained 3.32 mm? at 65 nm for the estimated area of the T&I
unit.

4.2 Simulation results

We conducted a cycle-accurate simulation for functional verifica-
tion and performance evaluation. We created a cycle-accurate sim-
ulator for the T&I unit to simulate its execution. This simulator
provides the rendered images, total execution cycles, hardware uti-
lization, cache statistics, and expected performance. We adopted a
GDDR3 memory simulator from GPGPUsim [Bakhoda et al. 2009]
to execute accurate memory access. To evaluate the performance of
the SRP, we utilized an in-house compiled simulator, csim, which
simulates the IR (intermediate representation) codes generated by
the SRP compiler tool-chain, and then provides total execution cy-
cles, IPC, FU utilization, and cache statistics.

SGRT uses four cores (four T&I units and four SRP cores). In a
T&I unit, the number of TRVs and ISTs is four and one, respec-
tively. A TRV has 16 stacks. Therefore, the maximum number of
rays that can be simultaneously processed is 256 (4 SGRT cores x 4
TRV units per core x 16 stacks per TRV). We configured the clock
frequency for the T&I unit and the SRP at 500 MHz and 1 GHz,
respectively. We configured a 1 GHz clock and 32 bit 2-channel
which is close to LPDDR3 memory, similar to those of the mod-

Table 5: Simulation results of T&I unit (Four units at 500 MHz clock).

Utilization (%) | Average steps Cache hit rate (%) Bandwidth | Performance | Ratio to | Ratio to
Test scene | Ray type | TRV IST TRV IST | TRVL1I TRVL2 ISTLI1 (GB/s) (Mrays/sec) Tesla Fermi
Sibenik Primary 89 52 2312 3.10 99 41 99 1.1 132 1.13 0.54
(80K tri.) AO 92 55 1487 1.17 99 68 99 0.1 222 1.86 0.91
Diffuse 49 38 2993 4.50 72 65 88 2.6 1.30 0.65
Fairy Primary 67 67 28.02 4.40 97 49 99 1.5 112 1.50 0.73
(179K tri.) | AO 61 79 12.43 198 94 84 99 0.4 249 2.69 1.52
Diffuse 49 67 18.99 421 73 63 91 3.7 97 2.38 1.33
Conference | Primary 78 70 15.54 3.35 99 57 99 0.3 184 1.30 0.68
(282K tri.) | AO 86 55 11.76 0.12 99 63 99 0.1 485 3.61 1.71
Diffuse 62 64 1459 3.82 90 70 96 33 178 2.92 1.41
Table 6: Performance comparison for the Fairy scene.
Desktop Mobile
GPU (Optix) MIC Multiprocessor Multiprocessor Ours
[OptiX 2013] [Wald 2012] [Spjut et al. 2012] [Kim et al. 2012a]
Parallelism SIMT Wide SIMD MIMD SIMT/MIMD MIMD + loop parallelism
Resolution 1920 1200 1920 1200 1280% 720 1280% 720 1920 1080 (Full HD)
Platform | NVIDIA GeForce GTX 680 | Intel MIC | Thead Multiprocessor | Reconfigurable SIMT | SGRT (H/W + shader)
Clock (MHz) 1006 1000 500 400 500 (H/W), 1000 (shader)
Process (nm) 28 45 65 90 65
Area (mm?) 294 - 25 16 25
BVH type SAH SAH BVH - SAH
FPS 37 29 9 2 34

ern mobile SoC [Exynos 2013]. We set the latency of the L1 and
the L2 caches to 1 and 20 cycles, respectively. A BVH tree is built
with a full SAH-based algorithm [Wald 2007] and supplied to the
front-end of the simulator before the simulation. We chose four test
scenes (Figure 8): Sibenik (80 K triangles), Fairy (174 K triangles),
Ferrari (210 K triangles), and Conference (282 K triangles).

First, we tested the RGS performance. Table 3 shows the results.
The shading process includes Phong lighting and bi-linear filtered
texturing. We tested the RGS with two kinds of rays, primary and
forced reflection (2-bounce), in order to see the influence of the ray
coherency. All the scenes were rendered at a 1024 X768 resolution.
Our RGS kernels were shown to have a performance of 147~198
Mrays/s due to the acceleration with the software pipelining and
SIMD parallelization in the SRP. The data cache of the SRP to ac-
cess the primitive data shows a relatively higher hit rate (91~98%)
with a smaller size (4 KB). In contrast, the hit rate of the texture
cache (32 KB) was not high (76~93%) as compared to the data
cache, because the texture memory locality decreases after shoot-
ing secondary rays with lower coherency, which can be alleviated
by texture compression or mipmap texturing for ray tracing [Park
etal. 2011].

Table 4 tabulates the simulation results of the proposed parallel
pipelined TRV (PPTRV) as compared to those of the conventional
single pipelined TRV (SPTRV). To examine the influence of the ray
data from Ailas ray tracer [2012], we used a primary ray, an ambient
occlusion (AO) ray, and a diffuse inter-reflection ray. Primary rays
are extremely coherent. In contrast, AO and diffuse inter-reflection
rays are incoherent, because they are distributed according to a Hal-
ton sequence on the hemisphere. The number of samples per pixel
was 32. All the scenes were rendered at a 1024 <768 resolution.
The performance values are averages from five representative view-
points per scene. This setup is the same as that in [Aila et al. 2012]
(Sibenik, Fairy, and Conference), except for the type of acceleration
structure.

116

The numbers in the table are the average steps per ray and Mrays/s
after the process is executed on a single T&I unit for each case.
As can be seen in the table, PPTRV outperforms SPTRV by up to
40% (Sibenik, diffuse ray) and by 26% on average. This is because
the PPTRV removes the bypassing in the SPTRV and increases
the latency. This improvement in performance can be also seen
in the average number of traversal steps: PPTRV reduces the num-
ber of steps by up to 2.6-fold. The additional hardware required for
the PPTRV as compared to the SPTRV is only two 16-entry FIFO
buffers and extra wires. The percentage of the increased area is only
3.6% (3.28 mm? — 3.32 mm? at 65 nm). Consequently, we found
that the PPTRYV is an efficient cost-effective traversal unit.

For AO rays, the performance improvement was lower than for
other rays. This can be explained by the early termination of their
traversal. The AO rays are treated as shadow rays, and they there-
fore terminate their traversal as soon as they find a hit primitive.
This any hit termination process reduces the number of average
steps and the number of bypassed rays in SPTRV.

Table 5 shows the performance results of the T&I units in the 4-
SGRT cores. The test condition is the same as that shown in Table
4. As shown in the table, the T&I units obtained a performance of
61~485 Mrays/s. As compared to the results of [Aila et al. 2012],
our SGRT can compete with the ray tracer on the previous desktop
GPU, Tesla, and Fermi architecture. In this comparison, our case
does not include RGS, but this would not result in an unfair compar-
ison because the RGS outperforms the T&I (e.g., RSG 182 Mrays/s,
T&I 132 Mrays/s, Sibenik, primary ray) and would not constitute a
bottleneck according to the results of the RGS performance (Table
3). The performance gap between the primary ray and the diffuse
ray was narrow (except for Sibenik) because MIMD with an ap-
propriately sized cache architecture is advantageous for incoherent
rays, as shown in [Kopta et al. 2010]. The reason for the overall
improved performance was that the current T&I unit combines the
enhanced traversal unit and the advantages of previous work (fixed
pipeline, RAU, and MIMD architecture).

The diffuse inter-reflection ray performance can be limited by mem-
ory bandwidth. We assumed a 2-channel LPDDR3 that theoreti-
cally provides a peak bandwidth of 12.8 GB/s [JEDEC 2012a], but
we can use about 3~4 GB/s because the access pattern of the T&I
unit is random [Rixner et al. 2000]. The diffuse rays showed lower
cache hit rates than other types of rays. These cache misses increase
the memory traffic (up to 3.7 GB/s), and the T&I utilization can be
decreased due to the memory latency. If the traffic for shading (up
to ~2 GB/s) is also considered, this problem may be aggravated.
We believe that this problem can be resolved with future mobile
memory, such as LPDDR4 and Wide-10 [JEDEC 2012b].

Table 6 compares our SGRT system and the other approaches in
different platforms, i.e., desktop GPU, MIC, and mobile processors.
We rendered our test scene at full HD resolution (1920 x 1080). The
area of the 4-SGRT cores includes all the T&I units and the SRPs.
The test scene was Fairy.

First, for comparison with a state-of-the-art desktop GPU, we im-
plemented a ray tracer with NVIDIA OptiX 2.6 [2013] and mea-
sured NVIDIA GeForce GTX 680. Although this OptiX version
supports various BVH trees, we chose a standard SAH BVH for
fair comparison. The result is 37 fps, which is similar to our results
of 34 fps. We believe that the SGRT is more advantageous in term
of the performance per area. It should be noted that we used a much
older fab process (65 nm) than GTX 680 (28 nm). In addition, we
compared our results with those of Wald’s research study on Intel
MIC architecture [Wald 2012]. We used the performance number
of pure rendering provided in his paper, because his work focused
on fast tree build. We believe that the comparison is fair because
his tree is also based on the best quality full SAH. The SGRT also
outperforms to the MIC (29 fps). Again, we find that our GPU al-
ready achieves the performance of ray tracers in the legacy desktop
environment.

Second, we also compared our approach to the previous mobile
processors for ray tracing [Spjut et al. 2012] [Kim et al. 2012a].
In [Kim et al. 2012a], the authors did not provide the values of ren-
dering performance for Fairy scene, and therefore we computed the
rendering performance with the throughput number (Mrays/s) they
presented. These two processors occupied small areas (25 mm? at
65 nm, 16 mm? at 90 nm), which are similar to ours (25 mm? at
65 nm). However, the performance is much worse than that of our
architecture (9 fps, 2 fps). The performance gap would be wider,
because their resolution was 720p HD.

4.3 FPGA prototype

To achieve a more accurate functional verification and demon-
stration of our SGRT architecture, we also implemented our full
GPU system at RTL level with Verilog HDL (Hardware Descrip-
tion Language). The implemented RTL codes are all executed on
FPGA platforms, as shown in Figure 9. Our prototype used Xil-
inx Virtex-6 LX760 FPGA chips [2013], which are hosted by the
Synopsys HAPS-64 board [2013b]. We customized 32-bit dual-
channel DDR2 memory and dual-port SRAM to the target board.
All the memory data (BVH tree, primitive scene, texture, SRP
VLIW/CGRA codes) can be uploaded via a USB interface when the
application is driven. The rendered scene is stored to a frame buffer
and displayed on the in-house fabricated LCD display (800x480)
board. A single SGRT core, including a T&I unit, SRP core,
AXI-bus, and memory controller, is partitioned and mapped to two
Virtex-6 chips due to the size limitation of an FPGA chip. There-
fore, the redundant resources can exist in the two chips (e.g., AXI-
buses and memory controller). This design uses 80%/60% logic
slices, and 31%/41% block memories of two FPGA chips, respec-
tively. We implemented a dedicated AXI-AHB bridge as an inter-

117

Figure 9: Our FPGA prototype system.

face between the FPGA chips due to the limitation of the number of
FPGA pins. The overall system was synthesized and implemented
with Xilinx Synplify Premier and ISE PAR at a 45 MHz clock fre-
quency. For fast prototyping, we used the floating-point unit of the
Synopsys DesignWare Library [2013a].

Several features of the SGRT could not be implemented due to the
size limitation of the FPGA chip. The current RTL version of the
T&I unit does not include RAU, and the only three TRVs are in-
tegrated in a single T&I unit. In addition, the SIMD RGS kernels
could not be used in the FPGA prototype because SIMD intrinsics
were not included in the current RTL version of the SRP.

Figure 1 shows the images (Ferrari and Fairy scene) rendered by the
SGRT on our FPGA prototype system. Full ray tracing (primary
and secondary ray (reflection/refraction/shadow)), including shad-
ing and bilinear-filtered texturing, is performed. To add the effect
of reflection/refraction to the Fairy scene, we modified the material
information of the objects and increased the number of light sources
to two. The rendering performance on the FPGA was 2.1 fps and
1.3 fps for Fairy and Ferrari, respectively. As compared with the
results presented in Table 6, these values are reasonable, if we con-
sider the difference between the platform environments (FPGA vs.
SoC, and core frequency) and non-implemented features in RTL
codes. We believe that we will demonstrate an interactive frame
rate through latency hiding by adding RAU and increasing the clock
frequency in the near future.

5 Conclusion and Future Work

In this paper, we proposed a new mobile GPU architecture called
SGRT. SGRT has a fast compact hardware engine that accelerates
the T&I operation and employs a flexible programmable shader to
support the RGS. SGRT was evaluated through a cycle-accurate
simulation, and the validity of the architecture was verified by
FPGA prototyping. The experimental results showed that SGRT
can provide real-time ray tracing at full HD resolution and com-
pete with not only mobile ray tracing processors but also desktop
CPU/GPU ray tracers in terms of the performance per area. The
full SGRT system was implemented at the Verilog/RTL level, and
then demonstrated on an FPGA platform. This constitutes a signifi-
cant attempt to apply ray tracing to the mobile terminal that is used
worldwide. We believe that SRGT will contribute to the various
future applications and enhance the user experience.

Our GPU has certain limitations. First, complex shading can be a
major cost. To date, we have implemented a simple shading effect,
and therefore the RGS has not constituted a bottleneck. However,
more complex computation for various illuminations and material

shading will cause a bottleneck in the SRP. Currently, we are adding
advanced features to the SRP to improve the abstract performance,
and then we will provide support for more complex RGS kernels.
Although the SGRT is currently using the SRP as a programmable
logic device, the shader core of the GPUs already available in mo-
bile SoCs can be an alternative solution. This will be a more cost-
effective solution for hybrid rasterization and ray tracing.

Second, our SGRT supports only triangle primitives for simple
hardware. However, we may need to employ a programmable so-
lution to support various primitives and various intersection algo-
rithms. The potential solution is to employ a programmable shader,
as with RPU [Woop et al. 2005]. A small SRP core including only
a VLIW engine may be a solution.

Third, our SGRT at RTL level has not been completely imple-
mented due to the FPGA size limitation and for several other rea-
sons. Therefore, we could not demonstrate the best performance
shown in the cycle-accurate simulation. Furthermore, we cannot
yet verify SGRT in the ASIC environment, which is close to that of
the mobile SoC. We will synthesize the full system with an ASIC
design compiler, and conduct a more detailed analysis of the cost
and power consumption.

Acknowledgements

The authors thanks Timo Aila and Tero Karras for sharing their
GPU ray tracers. Models used are courtesy of Dabrovic (Sibenik),
Ingo Wald (Fairy Forest), Anat Grynberg and Greg Ward (Confer-
ence Room).

References

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding the
efficiency of ray traversal on GPUs - kepler and fermi adden-
dum. In Proceedings of ACM High Performance Graphics 2012,
Posters.

ARM, 2013. ARM flagship mobile GPU, Mali-T678.
http://www.arm.com/products/multimedia/mali-graphics-plus-
gpu-compute/mali-t678.php.

ARM, 2013. The ARM NEON general-purpose SIMD engine.

http://www.arm.com/products/processors/technologies/neon.php.

BAKHODA, A., YUAN, G. L., FUNG, W. W. L., WONG, H., AND
AAMODT, T. M. 2009. Analyzing CUDA workloads using a
detailed GPU simulator. In Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS 2009), 163-174.

BORKAR, S., AND CHIEN, A. A. 2011. The future of micropro-
cessors. Communications of the ACM 54, 5 (May), 67-77.

CAUSTIC, 2013. Caustic series2 raytracing acceleration boards.
https://caustic.com/series2.

CUDA, 2013. NVIDIA CUDA 5.
http://www.nvidia.com/object/cuda_home_new.html.

ERNST, M. 2008. Multi bounding volume hierarchies. In Pro-
ceedings of IEEE/Eurographics Symposium on Interactive Ray
Tracing 2008, 35-40.

ERNST, M. 2012. Embree: Photo-realistic ray tracing kernels. In
ACM SIGGRAPH 2012,Exhibitor Technical Talk.

EXYNOS, 2013. Samsung application processor.
http://www.samsung.com/exynos.

118

GARANZHA, K., AND Loop, C. 2010. Fast ray sorting and
breadth-first packet traversal for GPU ray tracing. Computer
Graphics Forum 29, 2, 289-298.

GOMA, S. R. 2011. A 3D camera solution for mobile platform. In
Workshop on 3D Imaging.

GRIBBLE, C., AND RAMANI, K. 2008. Coherent ray tracing via
stream filtering. In Proceedings of IEEE/Eurographics Sympo-
sium on Interactive Ray Tracing, 59-68.

HAMEED, R., QADEER, W., WACHS, M., AzizI, O., SOLOMAT-
NIKOV, A., LEE, B. C., STEPHENRICHARDSON, KOZYRAKIS,
C., AND HOROWITZ, M. 2010. Understanding sources of inef-
ficiency in general-purpose chips. In Proceedings of the 37th An-
nual International Symposium on Computer architecture (ISCA),
37-47.

HSA, 2013. Heterogeneous system architecture foundation.
http://www.hsafoundation.com.

1PAD4, 2013. Inside the apple iPad4, A6X a very new beast!
http://www.chipworks.com/blog/recentteardowns/2012/11/01/
inside-the-apple-ipad-4-a6x-a-very-new-beast/.

JEDEC, 2012. Low power double data rate 3 SDRAM (LPDDR3).
http://www.jedec.org/sites/default/files/docs/TESD209-3.pdf.

JEDEC, 2012. Wide I/O single data rate (Wide I/O SDR).
http://www.jedec.org/sites/default/files/docs/JESD229.pdf.

KAN, P., AND JAUFMANN, H. 2012. High-quality reflection, re-
fraction, and caustics in augmented reality and their contribution
to visual coherence. In Proceedings of International Symposium
on Mixed and Augmented Reality (ISMAR), 99-108.

Kim, H.-Y., KiM, Y.-J., OH, J., AND KiM, L.-S. 2012. A recon-
figurable SIMT processor for mobile ray tracing with contention
reduction in shared memory. IEEE Transactions on Circuits and
Systems 1,99, 1-13.

KM, J.-W., LEE, W.-J., LEE, M.-W., AND HAN, T.-D. 2012.
Parallel-pipeline-based traversal unit for hardware-accelerated
ray tracing. In Proceedings of ACM SIGGRAPH Asia 2012,
Posters.

KISHONTI, 2013. CLbenchmark 1.1.
http://clbenchmark.com.

KoprTA, D., SPIUT, J., DAVIS, A., AND BRUNVAND, E. 2010.
Efficient MIMD architectures for high-performance ray tracing.
In Proceedings of the 28th IEEE International Conference on
Computer Design, 9—-16.

LEE, W.-J., Woo0, S.-0O., KwoN, K.-T., SoN, S.-J., MIN, K.-
J., LEE, C.-H., JANG, K.-J., PARK, C.-M., JUNG, S.-Y., ,
AND LEE, S.-H. 2011. A scalable GPU architecture based on
dynamically embedded reconfigurable processor. In Proceedings
of ACM High Performance Graphics 2011, Posters.

LEE, W.-J., LEE, S., NAH, J.-H., KM, J.-W., SHIN, Y., LEE, J.,
AND JUNG, S. 2012. SGRT: A scalable mobile GPU architec-
ture based on ray tracing. In Proceedings of ACM SIGGRAPH
2012, Talks.

MAHESRI, A., JOHNSON, D., CRAGO, N., AND PATEL, S. 2008.
Tradeoffs in designing accelerator architectures for visual com-
puting. In Proceedings of the 41st annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 164—175.

MEI, B., VERNALDE, S., VERKEST, D., MAN, H. D., AND
LAUWEREINS, R. 2003. Exploiting loop-level parallelism
on coarse-grained reconfigurable architectures using modulo

scheduling. In Proceedings of the conference on Design, Au-
tomation and Test in Europe (DATE) 2003, 10296.

MURALIMANOHAR, N., BALASUBRAMONIAN, R., AND JOUPPI,
N. 2007. Optimizing NUCA organizations and wiring alter-
natives for large caches with CACTI 6.0. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture, 3—
14.

NaH, J.-H., KANG, Y.-S., LEE, K.-J., LEE, S.-J., HAN, T.-
D., AND YANG, S.-B. 2010. MobiRT: an implementation of
OpenGL ES-based CPU-GPU hybrid ray tracer for mobile de-
vices. In Proceedings of ACM SIGGRAPH ASIA 2010 Sketches.

NAH, J.-H., PARK, J.-S., PARK, C., KiMm, J.-W., JUNG, Y.-H.,
PARK, W.-C., AND HAN, T.-D. 2011. T&I Engine: traver-
sal and intersection engine for hardware accelerated ray tracing.
ACM Transactions on Graphics 30, 6 (Dec).

OPENCL, 2013. Khronos OpenCL.
http://www.khronos.org/opencl/.

OPTIX, 2013. NVIDIA OptiX.
http://www.nvidia.com/object/optix.html.

PARK, W.-C., Kim, D.-S., PARK, J.-S., Kim, S.-D., Kim, H.-
S., AND HAN, T.-D. 2011. The design of a texture mapping unit
with effective mip-map level selection for real-time ray tracing.
IEICE Electron. Express 8, 13 (July), 1064—-1070.

PEDDIE, J. 2011. OpenGL ES and mobile trends - the next-
generation processing units. In ACM SIGGRAPH 2011 Khronos
OpenGL ES and Mobile BOF Meeting.

RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND
OWENS, J. D. 2000. Memory access scheduling. In Proceed-
ings of the 27th annual international symposium on computer
architecture, 128—138.

SCHMITTLER, J., WOOP, S., WAGNER, D., PAUL, W. J., AND
SLUSALLEK, P. 2004. Realtime ray tracing of dynamic
scenes on an FPGA chip. In Proceedings of ACM SIG-
GRAPH/EUROGRAPHICS Graphics Hardware, 95-106.

SLUSALLEK, P. 2006. Hardware architectures for ray tracing. In
ACM SIGGRAPH 2006 Course Notes.

SNAPDRAGON, 2013. Qualcomm application processor.
http://www.qualcomm.com/snapdragon.

SONG, J. H., LEE, W. C., KiMm, D. H., KiM, D.-H., AND LEE, S.
2012. Low-power video decoding system using a reconfigurable
processor. In Proceedings of IEEE International Conference on
Consumer Electronics (ICCE) 2012, 532-533.

SPJUT, J., KENSLER, A., KOPTA, D., AND BRUNVAND, E. 2009.
TRaX: a multicore hardware architecture for real-time ray trac-
ing. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28, 12, 1802—-1815.

SPJUT, J., KOPTA, D., BRUNVAND, E., AND DAVIS, A. 2012.
A mobile accelerator architecture for ray tracing. In Proceed-

ings of 3rd Workshop on SoCs, Heterogeneous Architectures and
Workloads (SHAW-3).

SYNOPSYS, 2013. Designware library.
http://www.synopsys.com/IP/SoClnfrastructureIP/Design Ware/
Pages/default.aspx.

SYNOPSYS, 2013. HAPS-60 series of FPGA systems.
http://www.synopsys.com/Systems/FPGABasedPrototyping/
Pages/HAPS-60-series.aspx.

119

TEGRA, 2013. NVIDIA application processor.
http://www.nvidia.com/object/tegra-4-processor.html.

TSAKOK, J. A. 2009. Faster incoherent rays: Multi-BVH ray
stream tracing. In Proceedings of ACM High Performance
Graphics 2009, 151-158.

WALD, 1., IZE, T., AND PARKER, S. 2008. Fast, parallel, and asyn-
chronous construction of BVHs for ray tracing animated scenes.
Computers & Graphics 32, 1, 3-13.

WALD, 1. 2004. Realtime Ray Tracing and Interactive Global
Hllumination. PhD thesis, Sarrland University.

WALD, I. 2007. On fast construction of SAH-based bounding
volume hierarchies. In Proceedings of IEEE/Eurographics Sym-
posium on Interactive Ray Tracing 2007, 33-40.

WALD, I. 2012. Fast construction of SAH BVHs on the intel many
integrated core (MIC) architecture. [EEE Transactions on Visu-
alization and Computer Graphics 18, 1, 47-57.

WooP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a
programmable ray processing unit for realtime ray tracing. ACM
Transactions on Graphics 24, 3, 434-444.

Woop, S. 2007. A Programmable Hardware Architecture for Re-
altime Ray Tracing of Coherent Dynamic Scenes. PhD thesis,
Sarrland University.

XILINX, 2013. Virtex-6 FPGA family.
http://www.xilinx.com/products/silicon-devices/fpga/virtex-
6/index.htm.

120

