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Abstract

Ray tracing naturally supports high-quality global illumination ef-
fects, but it is computationally costly. Traversal and intersection
operations dominate the computation of ray tracing. To accelerate
these two operations, we propose a hardware architecture integrat-
ing three novel approaches. First, we present an ordered depth-first
layout and a traversal architecture using this layout to reduce the
required memory bandwidth. Second, we propose a three-phase
ray-triangle intersection architecture that takes advantage of early
exit. Third, we propose a latency hiding architecture defined as the
ray accumulation unit. Cycle-accurate simulation results indicate
our architecture can achieve interactive distributed ray tracing.

CR Categories: Computer Graphics [I.3.7]: Computer
Graphics—Three-Dimensional Graphics and Realism–Ray tracing

Keywords: ray tracing, ray tracing hardware, global illumination
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1 Introduction

Ray tracing [Whitted 1980; Cook et al. 1984] is the most
commonly-used algorithm for photorealistic rendering. Ray trac-
ing generates a more realistic image than does rasterization, but
it requires tremendous computational power for traversal and ray-
primitive intersections. For this reason, it has been used for offline
rendering for most of the last decade.

For real-time ray tracing, many approaches utilizing CPUs, GPUs,
or custom hardware have recently been studied. These approaches
do not yet provide sufficient performance for processing 1G rays/s
for real-time distributed ray tracing [Govindaraju et al. 2008].

Most performance bottlenecks in ray tracing are in traversal and in-
tersection tests [Benthin 2006]. Traversal is the process of search-
ing an acceleration structure (AS), such as a kd-tree or bounding
volume hierarchy (BVH), to find a small subset of the primitives
for testing by the ray. A ray-primitive intersection test determines
the visibility of primitives found during the traversal.

We believe a dedicated hardware unit for traversal and the intersec-
tion test is a suitable solution for real-time distributed ray tracing.
In this paper, we present a custom hardware architecture, called
T&I (traversal and intersection) engine. This architecture can be
integrated with existing programmable shaders, as with raster op-
erations pipelines (ROPs) or texture mapping units. Also, it com-

prises three novel approaches that are applicable to the traversal and
intersection test processes.

First, an ordered depth-first layout (ODFL) and its traversal archi-
tecture are presented. The ODFL is the enhancement of an eight-
byte kd-tree node layout [Pharr and Humphreys 2010]. It arranges
the child node, which has a larger surface area than its sibling, ad-
jacent to its parent to improve parent-child locality. We apply this
layout to our traversal architecture to effectively reduce the miss
rate of the traversal cache. The ODFL also can be easily applied
to other CPU or GPU ray tracers. This concept was previously an-
nounced in the extended abstract [Nah et al. 2010].

Second, we propose a three-phase intersection test unit, which di-
vides the intersection test stage into three phases. Phase 1 is the
ray-plane test, Phase 2 is the barycentric coordinate test, and Phase
3 is the final hit point calculation. This configuration reduces the
need for further computation and memory requests for missed tri-
angles that are identified in either Phases 1 or 2. Phases 1 and 2 are
performed in a common module because they use roughly the same
arithmetic operations.

Third, a ray accumulation unit is proposed for hiding memory la-
tency. This unit manages memory requests and accumulates rays
that induce a cache miss. While the waiting missed block is fetched,
other rays can perform their operations. When the missed block is
fetched, the accumulated rays are flushed to the pipeline.

We verify the performance of our architecture with a cycle-accurate
simulator and evaluate resource requirements and performance. We
also perform a simulation with three types of rays that have different
coherence. The proposed architecture achieves 44-1188 Mrays/s
ray tracing performance at 500 MHz on 65 nm process.

The remainder of this paper is structured as follows. Section 2 de-
scribes related work. Section 3 gives an overview of the proposed
architecture. In Sections 4 to 6, we cover the details of our three
approaches (a traversal unit with the ODFL, a three-phase inter-
section test unit, and a ray accumulation unit). In Section 7, we
describe the experimental results of the proposed architecture sim-
ulation. Finally, we conclude the paper in Section 8.

2 Related Work

2.1 Dedicated ray tracing hardware

SaarCOR [Schmittler et al. 2004] is a ray tracing pipeline that con-
sists of a ray generation/shading unit, a 4-wide SIMD traversal unit,
a list unit, a transformation unit, and an intersection test unit. Woop
et al. [2005] presented the programmable RPU architecture, which
performs ray generation, shading, and intersection tests with pro-
grammable shaders. For dynamic scenes, D-RPU [Woop et al.
2006a; Woop 2007] has a node update unit [Woop et al. 2006b]
unlike RPU. RTE [Davidovic et al. 2011] is an optimized version
of D-RPU that uses tail recursive shaders with treelets.

SaarCOR, RPU, D-RPU, and RTE are based on packet tracing
[Wald et al. 2001], but packet tracing may result in low SIMD ef-
ficiency with incoherent rays as described in [Gribble and Ramani
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2008]. In order to compensate for this drawback, Gribble and Ra-
mani [2008] proposed a wide-SIMD ray tracing architecture using
stream filtering. For higher SIMD utilization, this architecture fil-
ters active rays in a ray packet during each step of the operation.
In contrast, TRaX [Spjut et al. 2009] and MIMD threaded multi-
processors [Kopta et al. 2010] exploit single-ray thread execution
rather than packet tracing. They have lightweight thread proces-
sors, shared functional units, and a shared cache in the core. Finally,
CausticRT [Caustic Graphics 2009] is commercial ray tracing hard-
ware, but detailed architecture for it has not been published.

2.2 General purpose many-core architecture

There have been some studies of new many-core architectures for
effective ray tracing. Larrabee [Seiler et al. 2008] uses multiple in-
order x86 CPU cores for full-software rendering. This project has
been shifted to the Intel Many Integrated Core (MIC) for high per-
formance computing [Wald 2010]. Copernicus [Govindaraju et al.
2008] is a tiled multicore processor for ray tracing. Mahesri et al.
[2008] proposed a new xPU architecture and evaluated its perfor-
mance in visual computing applications, including ray tracing. Op-
tiX [Parker et al. 2010] is a programmable ray tracing system de-
signed for nVIDIA GPUs. Aila and Karras [2010] proposed an
enhanced architecture, a stack-top cache and treelets, for the Fermi
GPU to reduce the memory traffic in incoherent ray tracing.

3 Overall System Architecture

3.1 Basic design decisions

Fixed logic design: We designed the T&I engine with a fixed
pipeline. The traversal and intersection tests are the most resource-
consuming stages. Fixed logic can achieve higher performance than
programmable logic through reduction of unused resources and the
removal of instruction fetching and decoding. Fixed logic is appro-
priate because traversal and intersection testing are repeating oper-
ations. Other stages that require a certain degree of flexibility, such
as ray generation and shading, are performed by a programmable
shader. D-RPU employs the same strategy.

Single-ray tracing: Our architecture is based on single-ray tracing
because single-ray tracing is more robust for incoherent rays than
SIMD packet tracing. According to Mahesri et al. [2008], SIMD ar-
chitectures showed poorer performance per area than MIMD archi-
tectures. Therefore, our method processes each ray independently
via a different data path as in the MIMD approaches.

Acceleration structure (AS): We selected kd-trees for the AS. Al-
though BVHs provide fast traversal performance in packet tracing
[Wald et al. 2007] and GPU ray tracing [Aila and Laine 2009], the
best AS is needed for single-ray tracing. In this case, kd-trees gen-
erally deliver faster ray intersection calculations than BVHs [Pharr
and Humphreys 2010]. The reason for this is that only a single ray-
plane intersection is required per kd-tree traversal step, and kd-trees
do not suffer from node overlapping [Woop 2007].

Fully pipelined architecture: Our architecture is fully pipelined
for high throughput. Therefore, our architecture requires shape data
(e.g., node, list, and triangle) for each cycle. In order to reduce
memory traffic, we assigned individual cache memories to all oper-
ation pipelines except for the second ray-triangle intersection unit,
which does not require data fetching.

3.2 System organization

Figure 1 illustrates the system organization including the T&I en-
gine consisting of a ray dispatcher (RD), traversal units (TRVs), list
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Figure 1: Overall system architecture of the T&I engine.

units (LISTs), the first intersection units (IST1s), and the second
intersection unit (IST2). Each unit is connected by buffers that pass
a ray from one unit to the others.

A TRV performs kd-tree traversal. We included four-entry short-
stack memory [Horn et al. 2007] in each TRV. This feature has two
benefits: a small SRAM size and stack overflow prevention without
a limited tree depth.

A LIST searches the primitive list in a leaf node. This unit is nec-
essary because a primitive can duplicate its reference in many leaf
nodes. This occurs in spatial subdivisions such as kd-trees.

IST1s and the IST2 perform ray-triangle intersection tests. An IST1
performs a ray-plane test and a barycentric test, and the IST2 com-
putes the final u, v, and t values of the hit point. The main goal of
this separation is a reduction in area-expensive reciprocal units; an
IST1 does not require reciprocal operations.

TRVs, LISTs, and IST1s require data fetching. For efficient mem-
ory access, we assigned a level-one (L1) cache memory and a ray
accumulation buffer to each pipeline. Three level-two (L2) caches
for TRVs, LISTs, and IST1s between off-chip memory and L1
caches reduce memory traffic.

The ratio of traversal to intersection testing is dependent on the ray
and scene characteristics; but Schmittler et al. [2004] suggested
that a ratio of 4:1 is reasonable. We therefore set 24 TRVs and six
LISTs. Also, we assigned eight IST1s per core because an IST1
handles two operations (ray-plane and barycentric tests). Finally,
we assigned only one IST2 per core because most triangles tested
by IST1s do not intersect the ray and an IST2 only handles the hit
triangles.

Ray generation and shading are processed by programmable
shaders. Use of external DRAM as the interface between the T&I
and the shader would be a bandwidth burden to the memory sys-
tem. Hence, we configure on-chip FIFO (First In, First Out) buffers
to store 128 rays for both input (ray generation to T&I) and output
(T&I to shading), respectively. We assumed that the size of a ray is
128 bytes. Therefore, a total of 32 KB (256×128 bytes) of SRAM
is required. To use these two buffers concurrently, programmable
shaders should support concurrent kernel execution.

An RD gets a ray from the programmable shader and transfers the
ray to the TRVs. The RD first calculates inverse direction vectors
for traversal. It then performs an intersection test between the ray
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and scene’s axis-aligned bounding box (AABB) and gets the scene-
Max value (the maximum t distance in the scene). Because only
one ray can be supplied for each cycle, rays are supplied to the
TRVs in a FIFO manner.

Table 1 illustrates how a ray moves from unit-to-unit. The numbers
in Table 1 correspond to the circled numbers in Figure 1.

Table 1: Data flow.

Flow From→To Current state of the ray Next process
1 RD→TRV Detected free TRV stacks Dispatching a new ray
2 TRV→TRV Finished an inner node traversal Going to the next node
3 TRV→LIST Finished a leaf node traversal Fetching the fist triangle index
4 LIST→IST1 Fetched the triangle index Ray-plane test (Phase 1)
5 IST1→IST1 Passed the ray-plane test Barycentric test (Phase 2)
6 IST1→TRV Failed the barycentric test Stack pop

with the last triangle
Passed the barycentric test Freeing the stack
(occlusion ray)

7 TRV→ Found the hit point End of the ray traversal
Shader or there are no hit points

8 IST1→IST2 Passed the barycentric test Calculation of the final
(radiance ray) hit point values (Phase 3)

9 IST1→LIST Failed either the ray-plane or Fetching the subsequent
barycentric test and subsequent triangle index
triangles remain in the leaf

10 IST2→TRV Found the nearest hit point Freeing the stack
(radiance ray)

11 IST2→LIST Subsequent triangles remain Fetching the subsequent
in the leaf triangle index

4 Traversal with Ordered Depth-First Layout

4.1 Background

At each traversal step, node fetching and stack operations are re-
quired. These operations can cause significant memory traffic be-
cause a ray visits dozens of nodes to find its hit point. In order to
alleviate this problem, we developed a cache-efficient layout called
ODFL and applied the short-stack algorithm [Horn et al. 2007] to
our traversal architecture.

Cache-efficient layouts can help reduce scene traffic. In kd-trees, a
compact eight-byte depth-first layout (DFL) [Pharr and Humphreys
2010] is widely used for ray tracing because of its small memory
footprint and the depth-first search manner of ray traversal. In this
layout, the parent node and the left child node are adjacent, so they
have parent-child locality. Therefore, this layout has only a single
pointer for the right child node. In the DFL, the arrangement cri-
terion of child nodes is a geometric position. We improve the DFL
by utilizing parent-child locality.

A simple way to remove memory traffic for stack operations is the
use of on-chip SRAM. However, this approach requires a large
SRAM to prevent stack overflow. The short-stack algorithm can
solve this problem. It uses a small, n-entry stack to maintain the
last n pushes. If the stack is empty, the ray restarts the traversal on
the restart node determined by the push-down method. Horn et al.
[2007] reported that the overhead of short-stack was less than 3%.

4.2 Proposed method

In contrast to the original DFL, the ODFL uses surface area rather
than the geometric position to arrange child nodes. This means that
the child node with the larger surface area is stored next to its parent
node. Because the probability of a ray intersecting with a node is
proportional to its surface area, the probability that a ray accesses
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Figure 2: (a) An example space, (b) original depth-first layout, and
(c) ordered depth-first layout.

the same cache line also increases. Figure 2 illustrates how our ap-
proach differs from the original DFL. For each case, leaf node k
has the largest surface area compared with all other leaf nodes. If a
ray visits leaf node k with the DFL (Figure 2-(b)), the ray accesses
three cache lines. In contrast, the ray accesses only one cache line
with the ODFL (Figure 2-(c)) because node k is stored in the same
cache line as node a (root). Because most tree construction algo-
rithms are based on the surface area heuristic (SAH) [MacDonald
and Booth 1990], we used this surface area value with no overhead
when determining the order of child nodes. We then add a one-
bit flag to indicate whether the node is reversed in order from the
original DFL. Because this flag can be embedded into an eight-byte
node, our layout does not require additional memory space.

Tree traversal using the ODFL is almost the same as the DFL, aside
from the use of the reorder flag. If the flag is true, the two child
nodes are considered to be reversed in contrast to their geometric
position. In front-to-back tree traversal, the reorder flag should be
referenced.

Table 2 shows the kd-tree traversal pipeline with the ODFL and
the short stack. We assumed that both a floating-point (FP) addi-
tion and multiplication requires two cycles, while an FP compari-
son requires a single cycle [Kopta et al. 2010]. We added a reorder
flag-check routine in the fourth pipeline stage for the ODFL. This
check routine requires only a one-bit NXOR operation. Also, this
pipeline is based on the short-stack algorithm. A stack operation
for on-chip SRAM can be performed in a single cycle. Note that
in contrast to the pseudo-code in [Horn et al. 2007], we exploited
the pre-computed inverse direction vector, as described in [Benthin
2006; Pharr and Humphreys 2010], to use a multiplier rather than
a reciprocal unit. In summary, we assigned one FP adder, one FP
multiplier, and three FP comparators for a traversal unit.

Table 2: Kd-tree traversal pipeline. FP, INT, ADD, MUL, and CMP
are the abbreviations for floating-point, integer, adder, multiplier,
and comparator, respectively. The sign() function extracts a sign bit
in an FP value. The pipelines in this table go from top to bottom.

No FP or INT ADD FP MUL FP CMP Etc.
P1 tmax< check the hit

sceneMax result and flag
P2 so=node.split stack allocation

- ray.ori[axis]) and free
P3
P4 tplane = so * leftChildFirst=

ray.invdir[axis] (reorderFlag
NXOR sign(so))

P5 leftChild =
currentNode+1

P6 tplane> sign
tmax (tplane) == 1

P7 tplane<
tmin

P8 stack push/pop
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4.3 Comparison with other approaches

In Table 3, we compare our architecture with other traversal archi-
tectures. Our architecture has several benefits. First, our single-ray
tracing approach is robust for incoherent rays in contrast to packet-
based SIMD approaches. Second, the stack size is considerably
reduced. Third, there are no reciprocal units due to the use of an in-
verse direction vector. Fourth, the ODFL can reduce cache misses.

Table 3: Comparison to other traversal architectures. Throughput
is the number of traversal steps per cycle.

SaarCOR RPU D-RPU Ours
[Schmittler et al. 2004] [Woop et al. 2005] [Woop 2007]

FP ADD 4 4 16 1
FP MUL 0 4 16 1
FP RCP 4 0 4 0
Stack entry 32 32 32 4
Peak throughput 4 4 4 1
Architecture SIMD SIMD SIMD MIMD
AS kd-tree kd-tree B-KD tree kd-tree
Special feature node update ODFL

5 Three-Phase Intersection Test Unit

5.1 Background

The majority of the ray-triangle intersection tests involve three-
phase calculations, as illustrated in Figure 3. First, a ray-plane test
determines whether the ray intersects with the triangle within the
t intervals. After passing this test, a barycentric test is performed.
This test checks barycentric coordinates (u, v) to determine whether
the hit point is inside or outside of the triangle. If the ray passes
these two tests, the final t, u, and v values can be calculated. This
final phase divides intermediate values (dett, detu, and detv) cal-
culated from the former two phases by the determinant value in
Cramer’s rule. Note that some algorithms [Wald 2004; Woop 2004;
Kensler and Shirley 2006] change the order of these three phases;
they execute this reciprocal earlier than the other processes.

Multi-phase intersection test algorithms result in early termination
for the test of non-intersecting triangles. Previous one-phase inter-
section hardware architectures [Schmittler et al. 2004; Woop et al.
2006a; Kim et al. 2007] have not exploited this feature. In other
words, the calculation costs of an intersecting triangle and a non-
intersecting triangle are the same. To solve this problem, we imple-
mented a three-phase intersection test for our proposed architecture.

To determine the optimal algorithm for our architecture, we an-
alyzed the computational costs of various intersection algorithms
(Table 4). In the early t version, which is optimized in this paper,
the ray-plane test (t test) is executed first, by multiplying the t in-
terval by the determinant value. According to Table 4, the early t
version of Shevtsov et al.’s method [2007] has the lowest costs for
non-intersecting triangles and Wald’s method [2004] has the lowest
costs for intersecting triangles. Because most of the tested triangles
are not intersected by the ray, we chose the former algorithm.

Although Möller and Trumbore’s method [1997] has advantages
in terms of memory footprint and the cost of pre-computation, we
did not choose it because its computational cost is too high and it
requires fetching three vertices. The latter feature is not suitable for
fully pipelined architectures because expensive three-port SRAM is
required.

5.2 Proposed method

The proposed method consists of two kinds of architecture. First,
the ray-plane and barycentric tests are performed in a common unit
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Figure 3: (a) Ray-plane test, (b) barycentric test, and (c) final hit
point calculation.

Table 4: Comparisons of intersection algorithms. MUL, RCP, tri,
and vtx are abbreviations for multiplication, reciprocal, triangle,
and vertex, respectively. (a), (b), and (c) are the same as in Fig-
ure 3. Pre-computation is performed either per triangle or per
ray packet. In single-ray tracing, however, the latter type of pre-
computation is performed per ray during the intersection test. The
pre-compation cost of each algorithm can be varied by calculation
methods.

Algorithm Computational cost Required
(a) (a)+(b) (a)+(b)+(c) Precom- memory size

putation
[Möller and Trumbore 1997] MUL 24 MUL 27 X 12B per tri

((b) only) RCP 1 12B per vtx
(early t version) MUL 20 MUL 26 MUL 29

RCP 1
[Wald 2004] MUL 5 MUL 11 MUL 11 MUL 22 36-48B

RCP 1 RCP 1 RCP 1 RCP 2 per tri
[Woop 2004] MUL 7 MUL 21 MUL 21 MUL 54 12B per tri

RCP 1 RCP 1 RCP 1 RCP 1 12B per vtx
[Kensler and Shirley 2006] MUL 7 MUL 21 MUL 21 MUL 6 12B per tri

RCP 1 RCP 1 RCP 1 12B per vtx
[Benthin 2006] MUL 9 MUL 15 MUL 27 12B per tri

((b) only) RCP 2 12B per vtx
(early t version) MUL 4 MUL 13 MUL 15

RCP 1 RCP 1 RCP 2
[Shevtsov et al. 2007] MUL 12 MUL 15 MUL 14 36-48B

((b) only) RCP 1 RCP 1 per tri
(early t version) MUL 6 MUL 14 MUL 17

RCP 1
[Havel and Herout 2010] MUL 7 MUL 21 MUL 24 MUL 36 48B per tri

non-SSE version RCP 1 RCP 1

(IST1) with two modes. Because the two tests have similar com-
putational costs and typically require triangle data fetching, this
common unit is useful. Tables 5 and 6 depict the pipeline stages
of the IST1 unit. Next, the last phase is performed in a separate unit
(IST2) due to the need for a reciprocal and non-data fetching (Table
7). In this IST2 unit, an FP reciprocal requires 16 cycles. The def-
initions of the variables in Tables 5-7 are as follows: nu, nv, and
np are normal data. pu and pv are vertex data. ci is the projection
axis. e0u, e0v, e1u, and e1v are edges data. ou, ov, and ow are the
ray’s origin. du, dv, and dw are the ray’s direction.

With this three-phase strategy, we can markedly reduce the required
arithmetic units for intersection tests. The number of floating-point
units in an IST1 comprises only seven adders, seven multipliers,
and three comparators while the number of floating-point units in an
IST2 includes only one reciprocal unit and three multipliers. There
is only one IST2 per T&I core, thus a T&I core includes only one
reciprocal unit for intersection tests.

Our strategy is also effective for reducing memory access. First,
we assumed that the 2-bit ci value could be embedded into other
values. We then only allotted 16 bytes (np, nu, nv, and pu) for
a ray-plane test. If the ray does not pass this test, then fetching of
other data for the barycentric test in the triangle is not required.
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Table 5: Pipeline stages of the first intersection test unit in mode 0
(ray-plane test). The pipelines in this table go from top to bottom.

No FP ADD FP MUL FP CMP Etc.
P1-2 dett=np-ow dvnv=dv*nv

dunu=du*nu
P3-4 det=dunu+dw ounu=ou*nu
P5-6 dett=dett-ounu ovnv=ov*nv

det=det+dvnv
P7-8 tmaxdet=tmax*det

tmindet=tmin*det
P9-10 dett=det-ovnv
P11-12 dudett=du*dett tmaxdet <=dett N/A
P13-14 puou=pu-ou
P15-16 N/A tmindet >=dett N/A
P17-18 N/A

Table 6: Pipeline stages of the first intersection test unit in mode 1
(barycentric test). The pipelines in this table go from top to bottom.

No FP ADD FP MUL FP CMP Etc.
P1-2 pvov=pv-ov dvdett=dv*dett

puoudet=puou*det
P3-4 Du=dudett pvovdet=pvov*det

-puoudet
P5-6 Dv=dvdett e1vDu = e1v*Du

-pvovdet
P7-8 e1uDv = e1u*Dv

e0uDv = e0u*Dv
P9-10 detu=e1vDu

-e1uDv
P11-12 e0vDu = e0v*Du detu sign(det)

<=det ==sign(detu)
P13-14 detv=

e0uDv-e0vDu
P15-16 tmpdet0 detv sign(det)

=detu+detv <=det ==sign(detv)
P17-18 tmpdet0

<=det

Table 7: Pipeline stages of the second intersection test unit.

No FP MUL FP RCP
P1-16 rdet = 1.0f / det
P17-18 t=dett*rdet, u=detu*rdet, v=detv*rdet

Our method permits effective configuration. When arranging trian-
gle data to memory, the separation of data for the intersection test
and for shading is effective in terms of data fetching [Wald et al.
2001]. In a fully pipelined architecture for intersection tests, all
data for the intersection test of a triangle should be stored in a cache
line since this architecture requires data fetching in each cycle. The
data layout of algorithms requiring pre-computation [Wald 2004;
Shevtsov et al. 2007; Havel and Herout 2010] uses 48 bytes per
triangle. Because 48 is not a power of two, Benthin et al. [2006]
stored normal and shader indices, along the data for the intersec-
tion, in a 64-byte cache line. This combination reduces cache ef-
ficiency at the intersection test stage, as 1/4 of the data in a cache
is unnecessary for the intersection test. In contrast, our three-phase
intersection does not need to fetch the entire 48 bytes each cycle.
Thus, only intersection data is stored in a cache.

5.3 Comparison with other approaches

In Table 8, we compare our three-phase architecture with other one-
phase dedicated intersection architectures. Our architecture greatly
reduces the number of arithmetic units compared with the other ar-
chitectures. Thus, we can conclude that our three-phase architec-
ture has a higher performance/area than previous approaches.

Table 8: Comparison to other intersection architectures. Through-
put is the number of intersection tests per cycle. Because the ratio
of IST1 to IST2 is 8:1, we divided the number of arithmetic units of
IST2 by 8. The throughput of 0.76 for our architecture obtained by
assuming that 70% of triangles are filtered in Phase 1.

SaarCOR D-RPU CDE Ours
[Schmittler et al. 2004][Woop 2007][Kim et al. 2007]IST1 IST2

FP ADD 12 17 12 7 0.375
FP MUL 11 21 27 7 0.375
FP RCP 1 1 1 0 0.125
Throughput 0.8 0.5 1.0 0.76
Algorithm [Wald 2004] [Möller and Trumbore 1997] [Shevtsov et al. 2007]

6 Ray Accumulation Unit for Latency Hiding

6.1 Background

Each of the traversal and intersection steps in ray tracing requires
memory access to obtain the shape data. In other words, ray trac-
ing is not only computation-intensive, but also memory-intensive.
Thus, efficient memory latency hiding techniques are required for
fast ray tracing.

Existing GPUs hide memory latency using hardware multithread-
ing [Fatahalian and Houston 2008]. This method is concurrently
executed from several hundred threads. For example, the Fermi
GPUs can perform 48 warps (=1536 threads) per streaming mul-
tiprocessor (SM). In GPU ray tracing, a ray is treated as a thread.
Even if some threads stall, others can be executed during the next
cycle. In many cases, this method can efficiently hide long-latency
operations, such as global memory access or texture fetching.

Although the hardware multithreading in GPUs is enabled, memory
traffic can be the primary factor limiting the performance of inco-
herent ray tracing [Aila and Laine 2009]. We expect that this occurs
because existing GPUs’ multithreading is processed on wide SIMD
architectures. For example, NVIDIA GPUs concurrently execute
32 threads in a warp. If rays are coherent, the threads may request
broadcast access or coalesced access. Thus, hardware multithread-
ing can be effective in this case. However, if rays are incoherent,
each thread in a warp may request different shape data. If one lane
misses at that time, all other lanes will wait. This situation prevents
the rays from exploiting temporal locality because the possibility
of evicting useful data in the cache may increase during the waiting
period.

The temporal locality of each ray can be explained as follows. If
a ray accesses a cache line, the ray is likely to access the cache
line in the near future. This is because the child, grandchild, or
sibling nodes of a particular node, the elements of a primitive list,
or the data of adjacent primitives can be stored in the same cache
line. As mentioned earlier, the hardware multithreading on wide
SIMD architectures may not effectively exploit this locality due to
increased cache miss.

Even if the shape data is fetched by global memory access without
cache (e.g., triangles in [Aila and Laine 2009]), a similar problem
occurs in incoherent ray tracing. Because many threads request
random access instead of coalesced access in this case, the memory
bandwidth can be saturated. In this case, the hardware multithread-
ing in GPUs cannot efficiently hide memory latency.

6.2 Proposed method

In this section, we propose specialized hardware multithreading for
ray tracing. If a ray causes cache miss, it should wait until the
shape data is fetched. In this case, the ray is stored in a small ray
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Figure 5: Operational flow of the ray accumulation unit.

accumulation (RA) buffer. Other rays can be processed during this
period, so the long memory latency can be effectively hidden.

Our approach has a similar purpose to the instruction execution
mechanism used in data flow architectures [Dennis 1980]. Both
our approach and data flow scheduling aim to achieve a continuous
process stream without waiting for the previous process to be com-
pleted. A different feature of our method compared with data flow
scheduling is the RA buffer configuration. In our approach, the rays
that reference the same cache line are accumulated in the same row
in an RA buffer. When the shape data requested by the accumulated
rays is fetched from the L2 cache, these rays with the shape data are
transferred from the RA buffer to the operation pipeline. Note that
a non-blocking cache is needed to support our method.

Figure 4 depicts the overall architecture of an RA unit. An RA
unit consists of control logics and buffer spaces. Each RA unit
is located between an input buffer, an L1 cache, and an operation
pipeline (e.g., TRV, LIST, and IST1) and fetches shape data from
L2 cache/memory.

In Figure 4, each row has four rays, a cache address (27 bits), cache
line data (32 bytes), a ray counter (four bits), and a ready bit. A ray
counter includes the number of rays in the row. Because a cache ad-

dress does not include the cache line offset (five bits), a ray counter
and a valid bit can be embedded within these five bits. We assume
that the buffer size in our hardware is 4×8, and thus, a buffer can
store up to 32 rays. This size was determined experimentally (see
Section 7.3), but all sizes (e.g., the number of stored rays and cache
line size) can be varied by a hardware designer.

A ready bit represents the existence or absence of “ready rays” in
the row. When the cache line data in the row is transferred from
the cache, all rays in the row are ready to be output to the operation
pipeline. If there are ready rays in the buffer, the buffer preferen-
tially outputs those rays to the operation pipeline. If and only if the
number of ready rays in the row is greater than 0, the ready bit is 1.

Figure 5 illustrates the operational flow of the RA unit. This flow
is divided into two steps: before a cache request and after a cache
response. There are three states in the first stage and five states in
the second stage.

In the first stage, the RA unit determines the output states for the
second stages and the cache request address. If there are rows with
a ready bit of 1, the RA unit sets the output state to 0. Otherwise,
the RA unit checks whether an input ray has been transferred from
the input buffer. If an input ray exists, the RA unit checks whether
the shape address required by the input ray exists in the RA buffer.
If so, the output state is 1. If not, the output state is 3. If an input
ray does not exist, then the output state is 2. Output states of 0, 1,
and 2 indicate that a cache request is NULL. If the output state is 3,
the RA unit makes a cache request using the required shape address
specified by the input.

In the second stage, the RA buffer identifies the output data us-
ing the state determined in the first stage. There are three possible
cases. In the first case, the RA unit sends a ray to the operation
pipeline. If requested data is contained in the cache (cache hit), the
output data is a combination of a ray from either the input buffer or
the RA buffer and shape data from the cache. If cache miss occurs
but ready rays remain in the RA buffer (state 0), ray data and shape
data are obtained from the RA buffer. If the state is 1 and the shape
data required by an input ray exists in the RA buffer, the output data
is a combination of the ray from the input buffer and the shape data
from the RA buffer. In the second case, there is no output data and
no content changes in either the input or RA buffers. This occurs
when there is no empty space in the row (state 1), no input rays
(state 2), or no empty rows in the RA buffer (state 3). In the third
case, the state is 3 and an empty row exists. Thus, a ray from the
input buffer is successfully stored in the RA buffer.

The main differences between existing hardware multithreading
and the proposed method are related to the working set size and the
exploitation of temporal locality. First, the buffer space of an RA
unit is small; a 32-entry RA buffer requires 4 KB of memory. Next,
each ray can effectively exploit its temporal locality because the
period between the shape data fetching of the ray is much shorter
than existing hardware multithreading. This feature results from the
small working-set size of our architecture.

7 Simulation Results and Analysis

7.1 Setup

To verify the proposed architecture, we created a cycle-accurate
simulator. This simulator collects scene and ray data from the files
and simulates the execution of our architecture. After simulation,
this simulator provides the total number of cycles used to generate a
scene, hardware utilization, cache statistics, expected performance,
and hit results.
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Figure 6: Test scenes: Sibenik with ray casting, Fairy with AO,
Conference with path tracing, and Hairball with AO.

The software setup was structured as follows. When we constructed
kd-trees, we used the SAH [MacDonald and Booth 1990] with on-
the-fly pruning [Soupikov et al. 2008]. We chose four test scenes
(Figure 6): Sibenik (80 K triangles), Fairy (174 K triangles), Con-
ference (282 K triangles), and Hairball (2.9 M triangles). To exam-
ine the influence of the ray coherence on performance, we created
three different types of ray data from Aila’s ray tracer [Aila and
Laine 2009]: a primary ray, an ambient occlusion (AO) ray, and
a diffuse inter-reflection ray. Primary rays are extremely coherent.
In contrast, AO and diffuse inter-reflection rays are incoherent be-
cause they are distributed according to a Halton sequence on the
hemisphere. The number of samples per pixel was 32. AO rays
were terminated by the cut-off value; we used AO cut-off values of
5.0, 0.3, 5.0, and 0.3 for the Sibenik, Fairy, Conference, and Hair-
ball scenes, respectively. All scenes were rendered at a 1024×768
resolution. The performance values are averages from five repre-
sentative viewpoints per scene except for the Hairball scene. This
setup is the same as that in [Aila and Laine 2009] (Sibenik, Fairy,
and Conference) and [Laine and Karras 2010] (Hairball) except for
the type of acceleration structure.

The hardware setup was structured as follows. We supplied rays
to the TRV units from the RD unit when the number of execut-
ing rays in a T&I core was less than 480 (24 TRVs×20 stacks per
TRV). We also adopted a GDDR3 memory simulator from GPGPU-
Sim [Bakhoda et al. 2009] in order to execute accurate memory
access. The settings of GDDR3 were as follows: 1 GHz clock,
8 channels, tCL=9, tRP =13, tRC=34, tRAS=21, tRCD=12,
and tRRD=8. These settings are similar to those of GTX280 (65
nm GPU) and [Mahesri et al. 2008]. We used the First-Ready First-
Come-First-Serve method [Rixner et al. 2000] for effective memory
access scheduling. The latency of the L1 and L2 caches was set to
1 and 20 cycles, respectively.

7.2 Hardware complexity and area estimation

Table 9 depicts the hardware complexity of a T&I core. As men-
tioned in Section 3.1, this T&I core is fully pipelined and indepen-
dently executed. If a ray requires 48 traversal steps and 12 intersec-
tion steps, the peak throughput of a T&I core in this case is 0.5 rays
per cycle.

We assigned an independent L1 cache for each TRV, LIST, and IST
unit. Each TRV, LIST, and IST1 unit has an 8 KB 2-way, 4 KB 2-
way, and 16 KB 4-way set associative cache, respectively. Because
traversal and intersection tests have read-only access patterns, each

Table 9: Complexity of a T&I core measured by the number of
floating-point units and the required on-chip memory.

ADD MUL RCP CMP RF L1 Cache L2 Cache
1 RD 6 9 1 12 2 KB

24 TRV 24 24 72 271 KB 192 KB 128 KB
6 LIST 43 KB 24 KB 32 KB
8 IST1 56 56 24 117 KB 128 KB 128 KB
1 IST2 3 1 9 KB

I/O buffer 32 KB
Total 86 92 2 108 476 KB 344 KB 288 KB

Table 10: Area estimates of a T&I core.

Functional Area Total Area Memory Area Total Area
Unit (mm2) (mm2) Unit (mm2) (mm2)

FP ADD 0.003 0.26 TRV L1 0.030 0.73
FP MUL 0.01 0.92 LIST L1 0.028 0.17
FP RCP 0.11 0.22 IST1 L1 0.082 0.66
FP CMP 0.00072 0.08 TRV L2 0.64

INT ADD 0.00066 0.01 LIST L2 0.24
Control/Etc. 0.35 IST1 L2 0.64

4 K RF 0.019 2.26
Wiring overhead 4.95

Total 12.12

independent cache requires only a single read port. We also as-
signed a 128 KB 2-way TRV L2 cache, a 32 KB 2-way L2 cache,
and a 128 KB 2-way IST1 L2 cache per T&I core. Each TRV, LIST,
and IST1 L2 cache has eight, four, and eight banks, respectively,
for multiple requests. All caches have a line size of 32 B. Register
files (RF) are needed for input buffers, output buffers, RA buffers,
traversal stacks, I/O buffers to programmable shaders, and pipeline
registers.

To predict the performance of our T&I engine, we carefully es-
timated the area of our architecture. First, we assumed that the
hardware specifications were similar to TRaX [Spjut et al. 2009]:
65 nm technology, a 200 mm2 die size, and the 500 MHz clock.
Unlike TRaX, however, our architecture separates T&I cores and
programmable shader cores. As with D-RPU [Woop 2007], we
assumed that T&I cores occupy less than 29.5% of the total die
area. The remaining area was assigned to programmable shaders
and memory interfaces. Second, we used the area estimates for
arithmetic units and caches using the 65 nm library from [Kopta
et al. 2010] and the CACTI 6.5 tool [Muralimanohar et al. 2007],
respectively.

Table 10 summarizes the area estimation of a single T&I core.
Stack operations, pipeline controls, RA buffer controls, and other
controls require hardware resources. We estimated the area of this
part to be 23.3% of the total area for arithmetic units. We obtained
this percentage from the ratio of the front-end area to that of the
execution area in [Mahesri et al. 2008]. We think this assumption is
conservative because control parts of our architecture do not need
instruction fetching and decoding in contrast to the architecture in
[Mahesri et al. 2008]. Also, wiring overhead should be taken into,
due to place and route, choice of logic gates, and other optimiza-
tions. Woop [2007] and Mahesri et al. [2008] used 29-33% wiring
overhead. In contrast, our estimation requires two levels of wiring
overhead (arithmetic units → TRV/LIST/IST units → a T&I core),
so we added 69% (1.69 is the square of 1.3) wiring overhead into
our area estimation. Finally, we concluded that a T&I core occupies
a 12.12 mm2 area with 65 nm technology.

One of our assumptions was that the maximum area for T&I cores is
less than 29.5% of the total area, as mentioned before. Hence, four
T&I cores (48.50 mm2) can be allocated in a 200 mm2 die. We
believe that this area ratio is suitable for preventing performance
bottlenecks caused by shaders.
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Table 11: Simulation results. TRV steps include the number of stack allocation/free/pop operations.
Ray type TRV/LIST/IST1/IST2 TRV/LIST/IST1 TRV/LIST/IST1 Average TRV/IST Memory Memory traffic Simulated

utilization (%) L1 cache hit (%) L2 cache hit (%) steps per ray traffic reduction by the ODFL (%) performance
(GB/s) (L1→L2 / L2→Main) (Mrays/s)

Sibenik (80 K triangles)
Primary 67 / 69 / 62 / 24 99 / 99 / 99 93 / 76 / 77 72 / 21 0.9 1.3 / 0.1 461
AO 87 / 65 / 56 / 00 98 / 99 /99 99 / 88 / 91 52 / 10 1.3 1.9 / 15.1 819
Diffuse 70 / 66 / 60 / 24 89 / 95 / 89 87 / 53 / 69 78 / 18 27.1 0.5 / 3.8 437
Fairy (174 K triangles)
Primary 85 / 55 / 53 / 21 97 / 99 / 98 91 / 71 / 71 127 / 22 3.3 5.7 / 1.6 363
AO 83 / 60 / 53 / 00 97 / 99 / 97 95 / 69 / 79 52 / 09 4.0 1.7 / 3.6 813
Diffuse 66 / 51 / 48 / 16 91 / 96 / 90 82 / 51 / 62 91 / 18 25.9 7.5 / 1.8 372
Conference (282 K triangles)
Primary 70 / 84 / 78 / 43 99 / 99 / 99 92 / 74 / 74 53 / 18 3.5 0.6 / 1.4 792
AO 81 / 71 / 62 / 00 98 / 99 / 97 96 / 76 / 93 34 / 07 1.7 2.1 / 2.4 1188
Diffuse 57 / 63 / 61 / 35 92 / 96 / 88 87 / 58 / 64 47 / 13 22.6 3.8 / 1.9 605
Hairball (2.9 M triangles)
Primary 83 / 68 / 64 / 07 93 / 98 / 92 92 / 72 / 76 216 / 43 12.6 4.6 / 2.9 186
AO 47 / 59 / 56 / 00 87 / 95 / 86 84 / 59 / 65 46 / 14 30.5 3.6 / 4.6 503
Diffuse 12 / 14 / 13 / 01 76 / 91 / 70 60 / 39 / 37 133 / 38 31.6 3.7 / 3.4 44

Table 12: Performance comparison for the Conference scene against previous approaches.
CPU GPU Many-core Ray Tracing H/W

Intel X7460 × 4 NVIDIA GTX285 NVIDIA GTX480 Intel MIC D-RPU RTE MIMD TM T&I Engine
[Tsakok 2009] [Aila and Laine 2009] [Aila and Laine 2009] [Wald 2010] [Woop 2007] [Davidovic et al. 2011] [Kopta et al. 2010] (ours)

(Primary) 142 253 211a 122 387 792
Mrays/s (AO) 134 269 117 1188

(Diffuse) 60 60 121 355 605
Process (nm) 45 55 40 45 90 90 65 65

Number of cores 24 240 480 32 8 1 80 4 (T&I)
Area (mm2) 503 × 4 470 529 - 186 15 175 48 (T&I),

200 (total)
Clock (MHz) 2666 648 (core) 700 (core) 1000 400 2000 1000 500

1476 (shader) 1401 (shader)

a1920 (width) × 1200 (height) × 46 (FPS) × 2 (one primary ray + one shadow ray).

7.3 Simulation results

Before the simulation, we conducted an experiment result to mea-
sure the optimal size of an RA buffer (Figure 7). We changed the
row height and column width in the RA buffer. When we increased
the size of the RA buffer, performance increased due to increased
unit utilization. However, it also increased the total area due to ad-
ditional registers. Based on the results, 4×8 was considered the
optimal size. Large RA buffers including 64-128 elements only
provided slight performance improvements, but required significant
additional area.
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Figure 7: Trade-off between performance and area by changing
the size of the RA buffer. In this experiment, we used the conference
scene with the viewpoint 1 and diffuse inter-reflection rays.

Table 11 summarizes the simulation results. Our T&I engine
achieved 44-1188 Mrays/s on four T&I cores. Table 12 shows
that our architecture performed better than existing ray tracing plat-
forms. This improved performance was due to the optimized algo-
rithms [Horn et al. 2007; Shevtsov et al. 2007; Soupikov et al. 2008;
Pharr and Humphreys 2010], fixed logic, MIMD architecture, and
the three novel concepts described in this paper.

The AO rays exhibited much better performance than other types
of rays. This can likely be explained by early termination. First,
if the t value is higher than the cut-off, the traversal of the AO ray
is terminated. Second, AO rays are treated as shadow rays, so they
terminate their traversal as soon as they find a hit primitive. The
reason that the AO rays results indicated zero utilization of IST2
units is this “any hit” termination process. Thus, the fewer traversal
and intersection steps were required of an AO ray compared with
those of other types of rays requiring the closest hit.

The diffuse inter-reflection ray performance was limited by mem-
ory bandwidth. In random access, DRAM utilization is approxi-
mately 30% [Rixner et al. 2000; Bakhoda et al. 2009]. Although
8-channel GDDR3 provides a peak bandwidth of 128 GB/s, we can
only exploit 30-40 GB/s because the cache miss data makes random
access patterns. According to the results in Table 11, the diffuse
inter-reflection rays showed lower cache hit ratios than other types
of rays. These cache misses increased memory traffic. Memory
bandwidth usage increased by up to 31 GB/s and T&I utilization de-
creased due to the memory latency. Nevertheless, the performance
of our memory system is comparable that of a GPU-based archi-
tecture for incoherent ray tracing [Aila and Karras 2010]. In the
Hairball scene, our architecture required a bandwidth of 31 GB for
44 M inter-reflection rays and the architecture in [Aila and Karras
2010] required a bandwidth of 2.5 GB for 3 M inter-reflection rays.
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We predict that a higher memory bandwidth with GDDR5 can al-
leviate the memory bottleneck of our architecture. We also suspect
that GPU-based ray reordering [Garanzha and Loop 2010] can in-
crease path tracing performance of our architecture. Garanzha and
Loop [2010] reported that the GPU path tracing performance in-
creased up to 1.9× when ray sorting was enabled.

The ODFL only slightly reduced memory traffic and this finding is
different from the results in [Nah et al. 2010] (a gain in bandwidth
of 16-30%). The main reason for this is that we used a smaller cache
line size (32 B) than they did (64 B). The importance of exploiting
parent-child locality is proportional to the cache line size. Another
reason is that we measured memory traffic in TRVs and LISTs be-
cause a tree layout changes the order of the primitive list. The
ODFL does not positively affect the primitive list because fetch-
ing of the list does not involve parent-child locality. Finally, the RA
unit in our hardware absorbed some cache misses because the rays
that referenced the same cache line were accumulated together in
the RA buffer.

Although the ODFL had few benefits in our hardware, we think
the ODFL has some promise. The benefits of the ODFL may be
magnified on processors with large cache lines (64-128 B). Also,
the use of the ODFL requires very small overhead for both tree
traversal (a one-bit NXOR operation) and tree construction (simple
ordering).

Finally, although we assigned sufficient area to programmable
shaders (as described in Section 7.2), ray generation and shad-
ing (RGS) can act as a bottleneck. According to a state-of-the-art
GPU ray tracer [Garanzha and Loop 2010], RGS performance on
GTX285 was 774 Mrays/s on the Conference scene (17 ms elapsed
for 133 M rays). If the simulated T&I performance is higher than
774 Mrays/s, then RGS is obviously a bottleneck. However, we
expect that higher RGS performance can be achieved for two rea-
sons. First, we fetch input rays and store output rays using FIFO
buffers instead of off-chip global memory. Second, modern GPUs
(e.g., GTX580) provide a higher computing power capacity than the
GTX285. Thus, we think that ray generation and ‘simple’ Phong
shading do not limit overall rendering performance.

8 Conclusions, Limitations, and Future Work

In this paper, we proposed a novel hardware architecture for effi-
cient tree traversal and intersection tests, which we called the T&I
engine. This architecture includes three novel concepts: the tree
traversal unit with ordered depth-first layout, the three-phase inter-
section test unit, and the ray accumulation unit for hiding memory
latency. Simulation results using a cycle-accurate simulator indi-
cated that our architecture performs better than other approaches.

Our architecture has certain limitations. First, our architecture lim-
its the primitive type to a triangle. In order to support other prim-
itive types, primitives should be converted into triangles, such as
in rasterization. Another potential solution is for programmable
shaders to take charge of ray-primitive intersection tests, as with
RPU [Woop et al. 2005], but this method has poor intersection per-
formance. In our future work, we plan to extend our intersection
test unit to support various primitive types.

Second, we focused on ray tracing of static scenes in this paper.
In dynamic scenes, acceleration structures must be updated in each
frame. If acceleration structures are constructed on CPUs and trans-
ferred to the T&I cores, the bandwidth of a PCI Express bus can be
a bottleneck. If programmable shaders on GPUs are used for ac-
celeration structure construction, dozens of milliseconds would be
required, as described in [Hou et al. 2011]. Thus, we hope to de-
velop special hardware architecture for tree construction.

Third, complex shading can be a major cost, although we expected
that simple shading would not limit overall performance in Section
7.3. We think that shading filter stacks [Gribble and Ramani 2008]
could be a solution to facilitate the concurrent use of various mate-
rial shaders.

Finally, our architecture was only verified with cycle-accurate sim-
ulations. In the near future, we will perform ASIC verification and
carefully investigate power consumption and temperatures.
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