
Lecture: Networks, Disks, Datacenters, GPUs

• Topics: networks wrap-up, disks and reliability, datacenters,
GPU intro (Sections 6.1-6.7, App D, Ch 4)
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Packets/Flits

• A message is broken into multiple packets (each packet
has header information that allows the receiver to
re-construct the original message)

• A packet may itself be broken into flits – flits do not
contain additional headers

• Two packets can follow different paths to the destination
Flits are always ordered and follow the same path

• Such an architecture allows the use of a large packet
size (low header overhead) and yet allows fine-grained
resource allocation on a per-flit basis

2



Flow Control

• The routing of a message requires allocation of various
resources: the channel (or link), buffers, control state

• Bufferless: flits are dropped if there is contention for a
link, NACKs are sent back, and the original sender has
to re-transmit the packet

• Circuit switching: a request is first sent to reserve the
channels, the request may be held at an intermediate
router until the channel is available (hence, not truly
bufferless), ACKs are sent back, and subsequent
packets/flits are routed with little effort (good for bulk
transfers)
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Buffered Flow Control

• A buffer between two channels decouples the resource
allocation for each channel

• Packet-buffer flow control: channels and buffers are
allocated per packet
 Store-and-forward

 Cut-through

• Wormhole routing: same as cut-through, but buffers in
each router are allocated on a per-flit basis, not per-packet
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Virtual Channels

Buffers Buffers

Flits do not carry headers.  Once a packet starts going over a
channel, another packet cannot cut in  (else, the receiving
buffer will confuse the flits of the two packets).  If the packet is
stalled, other packets can’t use the channel.

With virtual channels, the flit can be received into one of N buffers.
This allows N packets to be in transit over a given physical channel.
The packet must carry an ID to indicate its virtual channel.

channel

Buffers Buffers
Physical channel

Buffers Buffers
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Example

• Wormhole:

• Virtual channel:

A
B

B

A is going from Node-1 to Node-4; B is going from Node-0 to Node-5

Node-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

idleidle

A
B

ANode-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

B
A

Traffic Analogy:
B is trying to make
a left turn; A is trying
to go straight; there
is no left-only lane
with wormhole, but
there is one with VC
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Virtual Channel Flow Control

• Incoming flits are placed in buffers

• For this flit to jump to the next router, it must acquire
three resources:

 A free virtual channel on its intended hop
 We know that a virtual channel is free when the

tail flit goes through
 Free buffer entries for that virtual channel
 This is determined with credit or on/off management

 A free cycle on the physical channel
 Competition among the packets that share a

physical channel
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Buffer Management

• Credit-based: keep track of the number of free buffers in
the downstream node; the downstream node sends back
signals to increment the count when a buffer is freed;
need enough buffers to hide the round-trip latency

• On/Off: the upstream node sends back a signal when its
buffers are close to being full – reduces upstream
signaling and counters, but can waste buffer space
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Deadlock Avoidance with VCs

• VCs provide another way to number the links such that
a route always uses ascending link numbers
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• Alternatively, use West-first routing on the
1st plane and cross over to the 2nd plane in
case you need to go West again (the 2nd

plane uses North-last, for example) 9



Router Functions

• Crossbar, buffer, arbiter, VC state and allocation,
buffer management, ALUs, control logic, routing

• Typical on-chip network power breakdown:
 30% link
 30% buffers
 30% crossbar
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Router Pipeline

• Four typical stages:
 RC routing computation: the head flit indicates the VC that it 

belongs to, the VC state is updated, the headers are examined 
and the next output channel is computed (note: this is done for
all the head flits arriving on various input channels)
 VA virtual-channel allocation: the head flits compete for the

available virtual channels on their computed output channels
 SA switch allocation: a flit competes for access to its output

physical channel
 ST switch traversal: the flit is transmitted on the output channel

A head flit goes through all four stages, the other flits do nothing in the
first two stages (this is an in-order pipeline and flits can not jump
ahead), a tail flit also de-allocates the VC
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Router Pipeline

• Four typical stages:
 RC routing computation: compute the output channel
 VA virtual-channel allocation: allocate VC for the head flit
 SA switch allocation: compete for output physical channel
 ST switch traversal: transfer data on output physical channel

RC VA SA ST

-- -- SA ST

-- -- SA ST

-- -- SA ST

Cycle                 1      2      3     4      5      6      7

Head flit

Body flit 1

Body flit 2

Tail flit

RC VA SA ST

-- -- SA ST

-- -- SA ST

-- -- SA ST

SA

--

--

--

STALL
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Speculative Pipelines

• Perform VA and SA in parallel
• Note that SA only requires knowledge
of the output physical channel, not the VC

• If VA fails, the successfully allocated
channel goes un-utilized

RC VA
SA ST

-- SA ST

-- SA ST

-- SA ST

Cycle                 1      2      3     4      5      6      7

Head flit

Body flit 1

Body flit 2

Tail flit

• Perform VA, SA, and ST in
parallel (can cause collisions
and re-tries)

• Typically, VA is the critical
path – can possibly perform
SA and ST sequentially

• Router pipeline latency is a greater bottleneck when there is little contention
• When there is little contention, speculation will likely work well!
• Single stage pipeline?

RC VA
SA ST

SA ST

SA ST

SA ST
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Example Intel Router

Source: Partha Kundu, “On-Die Interconnects for Next-Generation CMPs”,
talk at On-Chip Interconnection Networks Workshop, Dec 2006 14



Example Intel Router

Source: Partha Kundu, “On-Die Interconnects for Next-Generation CMPs”,
talk at On-Chip Interconnection Networks Workshop, Dec 2006

• Used for a 6x6 mesh
• 16 B, > 3 GHz
• Wormhole with VC

flow control
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Current Trends

• Growing interest in eliminating the area/power overheads
of router buffers;  traffic levels are also relatively low, so
virtual-channel buffered routed networks may be overkill

• Option 1: use a bus for short distances (16 cores) and use
a hierarchy of buses to travel long distances

• Option 2: hot-potato or bufferless routing
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Centralized Crossbar Switch
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Crossbar Properties

• Assuming each node has one input and one output, a
crossbar can provide maximum bandwidth: N messages
can be sent as long as there are N unique sources and
N unique destinations

• Maximum overhead: WN2 internal switches, where W is
data width and N is number of nodes

• To reduce overhead, use smaller switches as building
blocks – trade off overhead for lower effective bandwidth
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Switch with Omega Network
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Omega Network Properties

• The switch complexity is now O(N log N)

• Contention increases: P0  P5 and P1  P7 cannot
happen concurrently (this was possible in a crossbar)

• To deal with contention, can increase the number of
levels (redundant paths) – by mirroring the network, we
can route from P0 to P5 via N intermediate nodes, while
increasing complexity by a factor of 2
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Tree Network

• Complexity is O(N)
• Can yield low latencies when communicating with neighbors
• Can build a fat tree by having multiple incoming and outgoing links

P0 P3P2P1 P4 P7P6P5
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Bisection Bandwidth

• Split N nodes into two groups of N/2 nodes such that the
bandwidth between these two groups is minimum: that is
the bisection bandwidth

• Why is it relevant: if traffic is completely random, the
probability of a message going across the two halves is
½  – if all nodes send a message, the bisection
bandwidth will have to be N/2

• The concept of bisection bandwidth confirms that the
tree network is not suited for random traffic patterns, but
for localized traffic patterns
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Distributed Switches: Ring

• Each node is connected to a 3x3 switch that routes
messages between the node and its two neighbors

• Effectively a repeated bus: multiple messages in transit

• Disadvantage: bisection bandwidth of 2 and N/2 hops on
average
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Distributed Switch Options

• Performance can be increased by throwing more hardware
at the problem: fully-connected switches: every switch is
connected to every other switch: N2 wiring complexity,
N2 /4 bisection bandwidth

• Most commercial designs adopt a point between the two
extremes (ring and fully-connected):
 Grid: each node connects with its N, E, W, S neighbors
 Torus: connections wrap around
 Hypercube: links between nodes whose binary names

differ in a single bit 
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Topology Examples

Grid
Hypercube

Torus

Criteria
64 nodes

Bus Ring 2Dtorus 6-cube Fully 
connected

Performance
Bisection 
bandwidth

Cost
Ports/switch
Total links 25



Topology Examples

Grid
Hypercube

Torus

Criteria
64 nodes

Bus Ring 2Dtorus 6-cube Fully 
connected

Performance
Diameter

Bisection BW 
1
1

32
2

8
16

6
32

1
1024

Cost
Ports/switch
Total links 1

3
64

5
128

7
192

64
2016 26



k-ary d-cube

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :

Should we minimize or maximize dimension?
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k-ary d-Cube

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :

N
2d + 1
Nd
2wd

d(k-1)/4
d(k-1)/2
2wkd-1

The switch degree, num links, pins per node, bisection bw for
a hypercube are half of what is listed above (diam and avg routing
distance are twice, switch complexity is              ) because unlike
the other cases, a hypercube does not have right and left neighbors.

Should we minimize or maximize dimension?

(2d + 1)2

(d + 1)2
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Warehouse-Scale Computer (WSC)

• 100K+ servers in one WSC

• ~$150M overall cost 

• Requests from millions of users (Google, Facebook, etc.)

• Cloud Computing: a model where users can rent compute
and storage within a WSC, there’s an associated
service-level agreement (SLA)

• Datacenter: a collection of WSCs in a single building,
possibly belonging to different clients and using different
hardware/architecture
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Workloads

• Typically, software developed in-house – MapReduce,
BigTable, Memcached, etc.

• MapReduce: embarrassingly parallel operations performed
on very large datasets, e.g., organize data into clusters,
aggregate a count over several documents

• Hadoop is an open-source implementation of the
MapReduce framework; makes it easy for users to write
MapReduce programs without worrying about low-level
task/data management 
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MapReduce

• Application-writer provides Map and Reduce functions
that operate on key-value pairs

• Each map function operates on a collection of records; a
record is (say) a webpage or a facebook user profile 

• The records are in the file system and scattered across
several servers; thousands of map functions are spawned
to work on all records in parallel

• The Reduce function aggregates and sorts the results
produced by the Mappers, also performed in parallel
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MR Framework Duties

• Replicate data for fault tolerance

• Detect failed threads and re-start threads

• Handle variability in thread response times

• Use of MR within Google has been growing every year:
Aug’04  Sep’09

 Number of MR jobs has increased 100x+
 Data being processed has increased 100x+
 Number of servers per job has increased 3x
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WSC Hierarchy

• A rack can hold 48 1U servers (1U is 1.75 inches high)

• A rack switch is used for communication within and out of
a rack; an array switch connects an array of racks

• Latency grows if data is fetched from remote DRAM or disk
(300us vs. 0.1us for DRAM and 12ms vs. 10ms for disk )

• Bandwidth within a rack is much higher than between
arrays; hence, software must be aware of data placement 
and locality  
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PUE Metric and Power Breakdown

• PUE = Total facility power / IT equipment power
(power utilization effectiveness)

• It is greater than 1; ranges from 1.33 to 3.03, median of 1.69

• The cooling power is roughly half the power used by
servers

• Within a server (circa 2007), the power distribution is as
follows:  Processors (33%), DRAM memory (30%), 
Disks (10%), Networking (5%), Miscellaneous (22%) 
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CapEx and OpEx

• Capital expenditure: infrastructure costs for the building,
power delivery, cooling, and servers

• Operational expenditure: the monthly bill for energy,
failures, personnel, etc.

• CapEx can be amortized into a monthly estimate by
assuming that the facilities will last 10 years, server
parts will last 3 years, and networking parts will last 4 
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CapEx/OpEx Case Study

• 8 MW facility : facility cost: $88M, server/networking
cost: $79M

• Monthly expense: $3.8M.  Breakdown:
 Servers 53%  (amortized CapEx)
 Networking 8% (amortized CapEx)
 Power/cooling infrastructure 20% (amortized CapEx)
 Other infrastructure 4% (amortized CapEx)

 Monthly power bill 13% (true OpEx)
 Monthly personnel salaries 2% (true OpEx)
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Improving Energy Efficiency

• An unloaded server dissipates a large amount of power

• Ideally, we want energy-proportional computing, but in
reality, servers are not energy-proportional

• Can approach energy-proportionality by turning on a few
servers that are heavily utilized

• See figures on next two slides for power/utilization profile
of a server and a utilization profile of servers in a WSC  
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Power/Utilization Profile

Source: H&P textbook.
Copyright © 2011, Elsevier Inc. All rights Reserved.
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Server Utilization Profile

Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month period at Google. Servers are rarely 
completely idle or fully utilized, in-stead operating most of the time at between 10% and 50% of their maximum utilization. (From 
Figure 1 in Barroso and Hölzle [2007].) The column the third from the right in Figure 6.4 calculates percentages plus or minus 5% 
to come up with the weightings; thus, 1.2% for the 90% row means that 1.2% of servers were between 85% and 95% utilized.

Source: H&P textbook.
Copyright © 2011, Elsevier Inc. All rights Reserved.



Problem 1

Assume that a server consumes 100W at peak utilization
and 50W at zero utilization.  Assume a linear relationship
between utilization and power. The server is capable of
executing many threads in parallel.  Assume that a single
thread utilizes 25% of all server resources (functional units,
caches, memory capacity, memory bandwidth, etc.).
What is the total power dissipation when executing 99
threads on a collection of these servers, such that 
performance and energy are close to optimal?
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Problem 1

Assume that a server consumes 100W at peak utilization
and 50W at zero utilization.  Assume a linear relationship
between utilization and power. The server is capable of
executing many threads in parallel.  Assume that a single
thread utilizes 25% of all server resources (functional units,
caches, memory capacity, memory bandwidth, etc.).
What is the total power dissipation when executing 99
threads on a collection of these servers, such that 
performance and energy are close to optimal?

For near-optimal performance and energy, use 25 servers.
24 servers at 100% utilization, executing 96 threads,
consuming 2400W.  The 25th server will run the last 
3 threads and consume 87.5~W. 41



Other Metrics

• Performance does matter, both latency and throughput

• An analysis of the Bing search engine shows that if a
200ms delay is introduced in the response, the next
click by the user is delayed by 500ms;  so a poor
response time amplifies the user’s non-productivity

• Reliability (MTTF) and Availability (MTTF/MTTF+MTTR)
are very important, given the large scale

• A server with MTTF of 25 years (amazing!) : 50K servers
would lead to 5 server failures a day; Similarly, annual disk
failure rate is 2-10%  1 disk failure every hour
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Important Problems

• Reducing power in power-down states

• Maximizing utilization

• Reducing cost with virtualization

• Reducing data movement

• Building a low-power low-cost processor

• Building a low-power low-cost hi-bw memory

• Low-power low-cost on-demand reliability
43



Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
disk covered with magnetic recording material on both
sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
each track is divided into sectors (100 – 500 per track,
each about 512 bytes) 

• A movable arm holds the read/write heads for each disk
surface and moves them all in tandem – a cylinder of data
is accessible at a time
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Disk Latency

• To read/write data, the arm has to be placed on the
correct track – this seek time usually takes 5 to 12 ms
on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
sector under the head – average is typically more than
2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
can be exploited) and sets up the transfer on the bus
(controller overhead) 45



RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information that allows
it to determine if the disk has an error or not (in other words,
redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
correct data
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RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
uses an array of disks and stripes (interleaves) data
across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
happens to two disks

• Reads to the mirror may happen only when the primary
disk fails – or, you may try to read both together and the
quicker response is accepted

• Expensive solution: high reliability at twice the cost
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RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism
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RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data
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RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes
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Other Reliability Approaches

• High reliability is also expected of memory systems;
many memory systems offer SEC-DED support – single
error correct, double error detect; implemented with an
8-bit code for every 64-bit data word on ECC DIMMs

• Some memory systems offer chipkill support – the ability
to recover from complete failure in one memory chip – many
implementations exist, some resembling RAID designs

• Caches are typically protected with SEC-DED codes

• Some cores implement various forms of redundancy,
e.g., DMR or TMR – dual or triple modular redundancy
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SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
image/sound and numerical applications
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GPUs

• Initially developed as graphics accelerators; now viewed
as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
of GPGPUs – CUDA from NVidia and OpenCL from an
industry consortium

• A heterogeneous system has a regular host CPU and a
GPU that handles (say) CUDA code (they can both be
on the same chip)
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The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
many SIMT cores

• A large data-parallel operation is partitioned into many
thread blocks (one per SIMT core); a thread block is
partitioned into many warps (one warp running at a
time in the SIMT core); a warp is partitioned across many
in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
i.e., the SIMT core stores the registers for each warp;
warps can be context-switched at low cost; a warp
scheduler keeps track of runnable warps and schedules
a new warp if the currently running warp stalls 54



The GPU Architecture
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Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
many active warps

• When a branch is encountered, some of the lanes proceed
along the “then” case depending on their data values;
later, the other lanes evaluate the “else” case; a branch
cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
lanes are coalesced into a few 128B cache line requests;
each request may return at a different time (mem divergence)56



GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
services a subset of all addresses

• Each L2 partition is connected to its own memory
controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
and uses chips with more banks, wide IO, and better
power delivery networks

• A portion of GDDR5 memory is private to the GPU and the
rest is accessible to the host CPU (the GPU performs copies)57
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• Bullet
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