
Lecture: Virtual Memory

• Topics: virtual memory, TLB/cache access (Sections 2.2)

1

Core 0

L1
D$

L1
I$

L2 $

Core 1

L1
D$

L1
I$

L2 $

Core 2

L1
D$

L1
I$

L2 $

Core 3

L1
D$

L1
I$

L2 $

Core 4

L1
D$

L1
I$

L2 $

Core 5

L1
D$

L1
I$

L2 $

Core 6

L1
D$

L1
I$

L2 $

Core 7

L1
D$

L1
I$

L2 $

Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller
forwards address requests
to the appropriate L2 bank

and handles coherence
operations

Shared NUCA Cache

UCA and NUCA

• The small-sized caches so far have all been uniform cache
access: the latency for any access is a constant, no matter
where data is found

• For a large multi-megabyte cache, it is expensive to limit
access time by the worst case delay: hence, non-uniform
cache architecture

3

Large NUCA

CPU

Issues to be addressed for
Non-Uniform Cache Access:

• Mapping

• Migration

• Search

• Replication

4

Problem 1

• Assume a large shared LLC that is tiled and distributed on the chip.
Assume 16 tiles. Assume an OS page size of 8KB. The entire LLC
has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative.
Which of the 40 physical address bits are used to specify the tile number?
Provide an example page number that is assigned to tile 0.

5

Problem 1

• Assume a large shared LLC that is tiled and distributed on the chip.
Assume 16 tiles. Assume an OS page size of 8KB. The entire LLC
has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative.
Which of the 40 physical address bits are used to specify the tile number?
Provide an example page number that is assigned to tile 0.

The cache has 64K sets, i.e., 6 block offset bits, 16 index bits, and
18 tag bits. The address also has a 13-bit page offset, and 27 page
number bits. Nine bits (bits 14-22) are used for the page number and
the index bits. Any four of those bits can be used to designate the tile
number, say, bits 19-22. An example page number assigned to tile 0
is xxx…xxx0000xxx…xxx

bit 22 19

40 Tag 23 22 Index 7 6 Offset 1

40 Page number 14 13 Page offset 1

6

Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process

7

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to phys
page number

Physical memory

13

Physical address

page offsetphysical page
number

13

8

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The memory-disk hierarchy can be either inclusive or
exclusive and the write policy is writeback

9

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste

10

Problem 2

• Build an example toy virtual memory system. Each program has 8
virtual pages. Two programs are running together. The physical
memory can store 8 total pages. Show example contents of the
physical memory, disk, page table, TLB. Assume that virtual pages
take names a-z and physical pages take names A-Z.

Processor

TLB Memory
Disk

Page table

11

Problem 2

• Build an example toy virtual memory system. Each program has 8
virtual pages. Two programs are running together. The physical
memory can store 8 total pages. Show example contents of the
physical memory, disk, page table, TLB. Assume that virtual pages
take names a-z and physical pages take names A-Z.

Processor

TLB

aA
cC
mM
zZ

Memory

A B C D
M N O Z

Disk

EFG
HPQ

Other Files

Page table
aA mM
bB nN
cC oO
dD pP
eE qQ
fF
gG
hH

12

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same

physical address – can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

13

TLB and Cache

14

Virtually Indexed Caches

• 24-bit virtual address, 4KB page size  12 bits offset and
12 bits virtual page number

• To handle the example below, the cache must be designed to use only 12
index bits – for example, make the 64KB cache 16-way

• Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Page in physical
memory

Data cache that needs 16
index bits 64KB direct-mapped

or 128KB 2-way…

cdef

bdef

Virtually indexed
cache

15

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

16

Problem 3

• Assume that page size is 16KB and cache block size is 32 B.
If I want to implement a virtually indexed physically tagged
L1 cache, what is the largest direct-mapped L1 that I can
implement? What is the largest 2-way cache that I can
implement?

17

Problem 3

• Assume that page size is 16KB and cache block size is 32 B.
If I want to implement a virtually indexed physically tagged
L1 cache, what is the largest direct-mapped L1 that I can
implement? What is the largest 2-way cache that I can
implement?

There are 14 page offset bits. If 5 of them are used for
block offset, there are 9 more that I can use for index.

512 sets  16KB direct-mapped or 32KB 2-way cache

18

Title

• Bullet

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

