
Lecture: Out-of-order Processors

• Topics: more ooo design details, timing, load-store queue

1

Problem 1

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers. When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8
R4  R3 + R1
R1  R5 + R9

2

Problem 0

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers. When does each instr leave the IQ?

R1  R2+R3 P33  P2+P3 cycle i
R1  R1+R5 P34  P33+P5 i+1
BEQZ R1 BEQZ P34 i+2
R1  R4 + R5 P35  P4+P5 i
R4  R1 + R7 P36  P35+P7 i+1
R1  R6 + R8 P1  P6+P8 j
R4  R3 + R1 P33  P3+P1 j+1
R1  R5 + R9 P34  P5+P9 j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit. 3

OOO Example

• Assume there are 36 physical registers and 32 logical
registers, and width is 4

• Estimate the issue time, completion time, and commit time
for the sample code

IQ

4

Assumptions

• Perfect branch prediction, instruction fetch, caches

• ADD  dep has no stall; LD  dep has one stall

• An instr is placed in the IQ at the end of its 5th stage,
an instr takes 5 more stages after leaving the IQ
(ld/st instrs take 6 more stages after leaving the IQ)

IQ

5

OOO Example

Original code Renamed code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

6

OOO Example

Original code Renamed code
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2) Must wait
ADD R1, R1, R2

IQ

7

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

8

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2)
ADD R1, R1, R2

IQ

9

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2) LD P1, 8(P35) i+7 i+8 i+14 i+14
ADD R1, R1, R2 ADD P2, P1, P35 i+9 i+10 i+15 i+15

IQ

10

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

11

Additional Details

• When does the decode stage stall? When we either run
out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
stage in a cycle. High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
pipeline. Large window size  high ILP

• No more WAR and WAW hazards because of rename
registers – must only worry about RAW hazards

12

Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
at every branch

13

Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
stage when it is known that the inputs can be correctly
received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
inputs are known, i.e., wakeup is speculative based on the
expected latency of the producer instruction

14

Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?
Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]

15

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
register dependences and
executes instructions as soon
as registers are ready

• Loads/stores access memory
as well – must check for RAW,
WAW, and WAR hazards for
memory as well

• Hence, first check for register
dependences to compute
effective addresses; then check
for memory dependences

16

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
maintained in program order in
the Load/Store Queue (LSQ)

• Loads can issue if they are
guaranteed to not have true
dependences with earlier stores

• Stores can issue only if we are
ready to modify memory (can not
recover if an earlier instr raises
an exception) – happens at commit

17

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD R4  8[R3]
ST R4  8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37  8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [P35 + 8]
P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34

18

Problem 2

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 4 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 8 3 abba
LD R11  [R12] 1 abba

19

Problem 2

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 4 7 abba 5 commit
LD R7  [R8] 2 abce 3 6
ST R9  [R10] 8 3 abba 9 commit
LD R11  [R12] 1 abba 2 10

20

Problem 3

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 5 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 1 4 abba
LD R11  [R12] 2 abba

21

Problem 3

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 5 7 abba 6 commit
LD R7  [R8] 2 abce 3 7
ST R9  [R10] 1 4 abba 2 commit
LD R11  [R12] 2 abba 3 5

22

Problem 4

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 4 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 8 3 abba
LD R11  [R12] 1 abba

23

Problem 4

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 4 7 abba 5 commit
LD R7  [R8] 2 abce 3 4
ST R9  [R10] 8 3 abba 9 commit
LD R11  [R12] 1 abba 2 3/10

24

Title

• Bullet

25

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

