
Lecture: Out-of-order Processors

• Topics: more ooo design details, timing, load-store queue
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Problem 1

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers.  When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ  R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8
R4  R3 + R1
R1  R5 + R9
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Problem 0

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers.  When does each instr leave the IQ?

R1  R2+R3             P33  P2+P3            cycle i
R1  R1+R5             P34  P33+P5                i+1
BEQZ  R1                  BEQZ P34                        i+2
R1  R4 + R5           P35  P4+P5                     i
R4  R1 + R7           P36  P35+P7                 i+1
R1  R6 + R8           P1    P6+P8                     j
R4  R3 + R1           P33  P3+P1                   j+1
R1  R5 + R9           P34  P5+P9                   j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit. 3



OOO Example

• Assume there are 36 physical registers and 32 logical
registers, and width is 4

• Estimate the issue time, completion time, and commit time
for the sample code

IQ
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Assumptions

• Perfect branch prediction, instruction fetch, caches

• ADD  dep has no stall;  LD  dep has one stall

• An instr is placed in the IQ at the end of its 5th stage,
an instr takes 5 more stages after leaving the IQ
(ld/st instrs take 6 more stages after leaving the IQ)

IQ
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OOO Example

Original code                         Renamed code
ADD   R1, R2, R3
LD      R2, 8(R1)
ADD   R2, R2, 8
ST      R1, (R3)
SUB   R1, R1, R5
LD      R1, 8(R2)      
ADD   R1, R1, R2

IQ
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OOO Example

Original code                         Renamed code
ADD   R1, R2, R3                       ADD  P33, P2, P3
LD      R2, 8(R1)                         LD     P34, 8(P33)
ADD   R2, R2, 8                          ADD  P35, P34, 8
ST      R1, (R3)                           ST      P33, (P3)
SUB   R1, R1, R5                       SUB   P36, P33, P5
LD      R1, 8(R2)      Must wait
ADD   R1, R1, R2

IQ
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OOO Example

Original code         Renamed code         InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3
LD      R2, 8(R1)        LD     P34, 8(P33)
ADD   R2, R2, 8         ADD  P35, P34, 8
ST      R1, (R3)          ST      P33, (P3)
SUB   R1, R1, R5      SUB   P36, P33, P5
LD      R1, 8(R2)                                            
ADD   R1, R1, R2                                          

IQ
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OOO Example

Original code         Renamed code         InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3         i    i+1   i+6      i+6
LD      R2, 8(R1)        LD     P34, 8(P33)         i    i+2   i+8      i+8
ADD   R2, R2, 8         ADD  P35, P34, 8         i    i+4   i+9      i+9
ST      R1, (R3)          ST      P33, (P3)            i    i+2   i+8      i+9
SUB   R1, R1, R5      SUB   P36, P33, P5    i+1  i+2   i+7      i+9
LD      R1, 8(R2)                                            
ADD   R1, R1, R2                                          

IQ
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OOO Example

Original code         Renamed code         InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3         i    i+1   i+6      i+6
LD      R2, 8(R1)        LD     P34, 8(P33)         i    i+2   i+8      i+8
ADD   R2, R2, 8         ADD  P35, P34, 8         i    i+4   i+9      i+9
ST      R1, (R3)          ST      P33, (P3)            i    i+2   i+8      i+9
SUB   R1, R1, R5      SUB   P36, P33, P5    i+1  i+2   i+7      i+9
LD      R1, 8(R2)        LD      P1, 8(P35)        i+7  i+8   i+14    i+14
ADD   R1, R1, R2      ADD   P2, P1, P35      i+9  i+10 i+15    i+15

IQ
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Additional Details

• When does the decode stage stall?  When we either run
out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
registers – must only worry about RAW hazards

12



Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
at every branch
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Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
stage when it is known that the inputs can be correctly
received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
inputs are known, i.e., wakeup is speculative based on the
expected latency of the producer instruction
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Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions? 
Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
register dependences and 
executes instructions as soon
as registers are ready

• Loads/stores access memory
as well – must check for RAW,
WAW, and WAR hazards for
memory as well

• Hence, first check for register
dependences to compute
effective addresses; then check
for memory dependences
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
maintained in program order in
the Load/Store Queue (LSQ)

• Loads can issue if they are
guaranteed to not have true
dependences with earlier stores

• Stores can issue only if we are
ready to modify memory (can not
recover if an earlier instr raises
an exception) – happens at commit
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD  R4  8[R3]
ST R4  8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37  8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [P35 + 8]
P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34
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Problem 2

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          4            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        8            3       abba
LD   R11  [R12]      1                     abba
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Problem 2

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd         4              5
LD   R3  [R4]      6                     adde         7              8
ST   R5  [R6]          4            7       abba         5           commit
LD   R7  [R8]       2                     abce         3              6
ST   R9  [R10]        8            3       abba         9           commit
LD   R11  [R12]      1                     abba         2              10
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Problem 3

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          5            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        1            4       abba
LD   R11  [R12]      2                     abba
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Problem 3

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd         4              5
LD   R3  [R4]      6                     adde         7              8
ST   R5  [R6]          5            7       abba         6           commit
LD   R7  [R8]       2                     abce         3              7
ST   R9  [R10]        1            4       abba         2           commit
LD   R11  [R12]      2                     abba         3              5
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Problem 4

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          4            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        8            3       abba
LD   R11  [R12]      1                     abba
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Problem 4

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st.  Assume
memory dependence prediction.

Ad. Op  St. Op  Ad.Val   Ad.Cal    Mem.Acc
LD   R1  [R2]          3                     abcd         4              5
LD   R3  [R4]      6                     adde         7              8
ST   R5  [R6]          4            7       abba         5           commit
LD   R7  [R8]       2                     abce         3              4
ST   R9  [R10]        8            3       abba         9           commit
LD   R11  [R12]      1                     abba         2             3/10
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Title

• Bullet
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