
Lecture: Out-of-order Processors

• Topics: branch predictor wrap-up, a basic out-of-order
processor with issue queue, register renaming,
and reorder buffer
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit  X

• Spatial locality: a program will shortly visit  X+1
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters.  Each counter is 3 bits wide.  So total storage
= 3 * 4096 = 12 Kb  or 1.5 KB
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb  
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4:  2/13 = 15%
1b Bim: (2+6+1)/(4+8+1) 

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
(gets confused by 01111
unless you take branch-PC
into account while indexing)
Local: (4+7+1)/13

= 12/13 = 92%
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An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ
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Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
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Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3                     T1  R2+R3
R3  R4+R5                     T2  R4+R5
BEQZ  R1                           BEQZ  T1
R1  R1 + R3                   T4  T1+T2
R1  R1 + R3                   T1  T4+T2
R3  R1 + R3                   T2  T1 +R3
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Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
that enter also get placed in the ROB – the process of an
instruction leaving the ROB (in order) is called commit –
an instruction commits only if it and all instructions before
it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
register file only when the instruction commits – until then,
the result is saved in a temporary register in the ROB
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Design Details - II

• Instructions get renamed and placed in the issue queue –
some operands are available (T1-T6; R1-R32), while 
others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue –
instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided
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Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
of the ROB – at this point, R1-R32 contain results for all
instructions up to instr-3 – save registers, save PC of instr-3,
and service the exception

• If branch is a mispredict, flush all instructions after the
branch and start on the correct path – mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

• Potential problems: ?
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Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB
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The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
of R1 is now in P33 and not P1 – on an exception, P33 is
copied to memory and not P1

• An instruction in the issue queue need not modify its
input operand when the producer commits

• When instruction-1 commits, we no longer have any use
for P1 – it is put in a free pool and a new instruction can
now enter the pipeline  for every instr that commits, a
new instr can enter the pipeline  number of in-flight 
instrs is a constant = number of extra (rename) registers 17



The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Problem 2

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
R4  R3 + R1
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Problem 2

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers

R1  R2+R3                   P33  P2+P3
R3  R4+R5                   P34  P4+P5
BEQZ  R1                        BEQZ P33
R1  R1 + R3                 P35  P33+P34
R1  R1 + R3                 P36  P35+P34
R3  R1 + R3                 P1    P36+P34
R4  R3 + R1                 P3    P1+P36
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Title

• Bullet
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