
Lecture: Out-of-order Processors

• Topics: branch predictor wrap-up, a basic out-of-order
processor with issue queue, register renaming,
and reorder buffer

1

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

2

Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit X

• Spatial locality: a program will shortly visit X+1

3

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

4

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters. Each counter is 3 bits wide. So total storage
= 3 * 4096 = 12 Kb or 1.5 KB

5

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

6

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb

7

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
8

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4: 2/13 = 15%
1b Bim: (2+6+1)/(4+8+1)

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
(gets confused by 01111
unless you take branch-PC
into account while indexing)
Local: (4+7+1)/13

= 12/13 = 92%
9

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

10

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3
R3  R4+R5
BEQZ R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3

11

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3 T1  R2+R3
R3  R4+R5 T2  R4+R5
BEQZ R1 BEQZ T1
R1  R1 + R3 T4  T1+T2
R1  R1 + R3 T1  T4+T2
R3  R1 + R3 T2  T1 +R3

12

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
that enter also get placed in the ROB – the process of an
instruction leaving the ROB (in order) is called commit –
an instruction commits only if it and all instructions before
it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
register file only when the instruction commits – until then,
the result is saved in a temporary register in the ROB

13

Design Details - II

• Instructions get renamed and placed in the issue queue –
some operands are available (T1-T6; R1-R32), while
others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue –
instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided

14

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
of the ROB – at this point, R1-R32 contain results for all
instructions up to instr-3 – save registers, save PC of instr-3,
and service the exception

• If branch is a mispredict, flush all instructions after the
branch and start on the correct path – mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

• Potential problems: ?

15

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

16

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
of R1 is now in P33 and not P1 – on an exception, P33 is
copied to memory and not P1

• An instruction in the issue queue need not modify its
input operand when the producer commits

• When instruction-1 commits, we no longer have any use
for P1 – it is put in a free pool and a new instruction can
now enter the pipeline  for every instr that commits, a
new instr can enter the pipeline  number of in-flight
instrs is a constant = number of extra (rename) registers 17

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

18

Problem 2

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers

R1  R2+R3
R3  R4+R5
BEQZ R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
R4  R3 + R1

19

Problem 2

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers

R1  R2+R3 P33  P2+P3
R3  R4+R5 P34  P4+P5
BEQZ R1 BEQZ P33
R1  R1 + R3 P35  P33+P34
R1  R1 + R3 P36  P35+P34
R3  R1 + R3 P1  P36+P34
R4  R3 + R1 P3  P1+P36

20

Title

• Bullet

21

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

