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Lecture 21: Transactional Memory 

• Topics: Hardware TM basics, different implementations 
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Transactions 

• New paradigm to simplify programming 

 instead of lock-unlock, use transaction begin-end 

 locks are blocking, transactions execute speculatively 

   in the hope that there will be no conflicts 

 

• Can yield better performance; Eliminates deadlocks 

 

• Programmer can freely encapsulate code sections within 

   transactions and not worry about the impact on 

   performance and correctness (for the most part) 

 

• Programmer specifies the code sections they’d like to see 

  execute atomically – the hardware takes care of the rest  

  (provides illusion of atomicity) 
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Transactions 

• Transactional semantics: 

 when a transaction executes, it is as if the rest of the 

   system is suspended and the transaction is in isolation 

 the reads and writes of a transaction happen as if they 

   are all a single atomic operation 

 if the above conditions are not met, the transaction 

   fails to commit (abort) and tries again 

 

         transaction begin 

              read shared variables 

              arithmetic 

              write shared variables 

         transaction end 
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Example 

Producer-consumer relationships – producers place tasks at the tail of 

 a work-queue and consumers pull tasks out of the head 

 

Enqueue                                       Dequeue 

  transaction begin                            transaction begin 

     if (tail == NULL)                              if (head->next == NULL) 

       update head and tail                       update head and tail 

     else                                                 else 

       update tail                                       update head 

  transaction end                               transaction end 

 

With locks, neither thread can proceed in parallel since head/tail may be 

 updated – with transactions, enqueue and dequeue can proceed in 

 parallel – transactions will be aborted only if the queue is nearly empty 
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Example 

Hash table implementation 

  transaction begin 

      index = hash(key); 

      head = bucket[index]; 

      traverse linked list until key matches 

      perform operations 

  transaction end 

 
Most operations will likely not conflict  transactions proceed in parallel 

 

Coarse-grain lock  serialize all operations 

Fine-grained locks (one for each bucket)  more complexity, more storage, 

                                                                      concurrent reads not allowed, 

                                                   concurrent writes to different elements not allowed 
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TM Implementation 

Core Core 

Cache Cache 

• Caches track read-sets and write-sets 

• Writes are made visible only at the end of the transaction 

• At transaction commit, make your writes visible; others may abort 
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Detecting Conflicts – Basic Implementation 

• Writes can be cached (can’t be written to memory) – if the 

  block needs to be evicted, flag an overflow (abort transaction 

  for now) – on an abort, invalidate the written cache lines 

 

• Keep track of read-set and write-set (bits in the cache) for 

  each transaction 

 

• When another transaction commits, compare its write set 

   with your own read set – a match causes an abort 

 

• At transaction end, express intent to commit, broadcast 

  write-set (transactions can commit in parallel if their  

  write-sets do not intersect) 
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Summary of TM Benefits 

• As easy to program as coarse-grain locks 

 

• Performance similar to fine-grain locks 

 

• Avoids deadlock 
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Design Space 

• Data Versioning 

 Eager: based on an undo log 

 Lazy: based on a write buffer 

 

• Conflict Detection 

 Optimistic detection: check for conflicts at commit time 

   (proceed optimistically thru transaction) 

 Pessimistic detection: every read/write checks for 

   conflicts (reduces work during commit) 
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“Lazy” Implementation 

• An implementation for a small-scale multiprocessor with 

  a snooping-based protocol 

 

• Lazy versioning and lazy conflict detection 

 

• Does not allow transactions to commit in parallel 
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“Lazy” Implementation 

• When a transaction issues a read, fetch the block in 

  read-only mode (if not already in cache) and set the 

  rd-bit for that cache line 

 

• When a transaction issues a write, fetch that block in 

   read-only mode (if not already in cache), set the wr-bit 

   for that cache line and make changes in cache 

 

• If a line with wr-bit set is evicted, the transaction must 

  be aborted (or must rely on some software mechanism 

  to handle saving overflowed data) 
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“Lazy” Implementation 

• When a transaction reaches its end, it must now make 

  its writes permanent 

 

• A central arbiter is contacted (easy on a bus-based system), 

  the winning transaction holds on to the bus until all written 

  cache line addresses are broadcasted (this is the commit) 

  (need not do a writeback until the line is evicted – must 

  simply invalidate other readers of these cache lines) 

 

• When another transaction (that has not yet begun to commit) 

   sees an invalidation for a line in its rd-set, it realizes its 

   lack of atomicity and aborts (clears its rd- and wr-bits and 

   re-starts) 
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“Lazy” Implementation 

• Lazy versioning: changes are made locally – the “master copy” is 

  updated only at the end of the transaction 

 

• Lazy conflict detection: we are checking for conflicts only when one of 

  the transactions reaches its end 

 

• Aborts are quick (must just clear bits in cache, flush pipeline and 

  reinstate a register checkpoint) 

 

• Commit is slow (must check for conflicts, all the coherence operations 

  for writes are deferred until transaction end) 

 

• No fear of deadlock/livelock – the first transaction to acquire the bus will 

  commit successfully 

 

• Starvation is possible – need additional mechanisms 
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“Lazy” Implementation – Parallel Commits 

• Writes cannot be rolled back – hence, before allowing 

  two transactions to commit in parallel, we must ensure 

  that they do not conflict with each other 

 

• One possible implementation: the central arbiter can 

  collect signatures from each committing transaction 

  (a compressed representation of all touched addresses) 

 

• Arbiter does not grant commit permissions if it detects 

  a possible conflict with the rd-wr-sets of transactions 

  that are in the process of committing 

 

• The “lazy” design can also work with directory protocols 
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“Eager” Implementation 

• A write is made permanent immediately (we do not wait 

  until the end of the transaction) 

 

• This means that if some other transaction attempts a 

   read, the latest value is returned and the memory may 

   also be updated with this latest value 

 

• Can’t lose the old value (in case this transaction is 

  aborted) – hence, before the write, we copy the old 

  value into a log (the log is some space in virtual memory 

  -- the log itself may be in cache, so not too expensive) 

      This is eager versioning 
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“Eager” Implementation 

• Since Transaction-A’s writes are made permanent 

  rightaway, it is possible that another Transaction-B’s 

  rd/wr miss is re-directed to Tr-A 

 

• At this point, we detect a conflict (neither transaction has 

  reached its end, hence, eager conflict detection): two 

  transactions handling the same cache line and at least 

  one of them does a write 

 

• One solution: requester stalls: Tr-A sends a NACK to 

   Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has 

   committed and can hand off the latest cache line to B 

    neither transaction needs to abort 
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“Eager” Implementation 

• Can lead to deadlocks: each transaction is waiting for the 

   other to finish 

 

• Need a separate (hw/sw) contention manager to detect 

  such deadlocks and force one of them to abort 

 

          Tr-A                                            Tr-B 

      write  X                                        write  Y 

       …                                                 … 

      read Y                                          read X 
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“Eager” Implementation 

• Note that if Tr-B is doing a write, it may be forced to stall 

  because Tr-A may have done a read and does not want to 

  invalidate its cache line just yet 

 

• If new reading transactions keep emerging, Tr-B may be 

  starved – again, need other sw/hw mechanisms to handle 

  starvation 

 

• Since logs are stored in virtual memory, there is no cache 

   overflow problem and transactions can be large 

 

• Commits are inexpensive (no additional step required); 

  Aborts are expensive, but rare (must reinstate data from logs) 
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Other Issues 

• Nesting: when one transaction calls another 

 flat nesting: collapse all nested transactions into one 

                      large transaction 

 closed nesting: inner transaction’s rd-wr set are included 

                            in outer transaction’s rd-wr set on inner 

                            commit; on an inner conflict, only the  

                            inner transaction is re-started 

 open nesting: on inner commit, its writes are committed 

                          and not merged with outer transaction’s 

                          commit set 

 

• What if a transaction performs I/O? 

• What if a transaction overflows out of cache? 
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Useful Rules of Thumb 

• Transactions are often short – more than 95% of them will 

   fit in cache 

 

• Transactions often commit successfully – less than 10% 

   are aborted 

 

• 99.9% of transactions don’t perform I/O 

 

• Transaction nesting is not common 

 

• Amdahl’s Law again: optimize the common case! 
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Discussion 

• “Eager” optimizes the common case and does not waste 

   energy when there’s a potential conflict 

 

• TM implementations require relatively low hardware support 

 

• Multiple commercial examples: Sun Rock, AMD ASF, 

  IBM BG/Q, Intel Haswell  
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Title 

• Bullet 


