
1

Lecture 21: Transactional Memory

• Topics: Hardware TM basics, different implementations

2

Transactions

• New paradigm to simplify programming

 instead of lock-unlock, use transaction begin-end

 locks are blocking, transactions execute speculatively

 in the hope that there will be no conflicts

• Can yield better performance; Eliminates deadlocks

• Programmer can freely encapsulate code sections within

 transactions and not worry about the impact on

 performance and correctness (for the most part)

• Programmer specifies the code sections they’d like to see

 execute atomically – the hardware takes care of the rest

 (provides illusion of atomicity)

3

Transactions

• Transactional semantics:

 when a transaction executes, it is as if the rest of the

 system is suspended and the transaction is in isolation

 the reads and writes of a transaction happen as if they

 are all a single atomic operation

 if the above conditions are not met, the transaction

 fails to commit (abort) and tries again

 transaction begin

 read shared variables

 arithmetic

 write shared variables

 transaction end

4

Example

Producer-consumer relationships – producers place tasks at the tail of

 a work-queue and consumers pull tasks out of the head

Enqueue Dequeue

 transaction begin transaction begin

 if (tail == NULL) if (head->next == NULL)

 update head and tail update head and tail

 else else

 update tail update head

 transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be

 updated – with transactions, enqueue and dequeue can proceed in

 parallel – transactions will be aborted only if the queue is nearly empty

5

Example

Hash table implementation

 transaction begin

 index = hash(key);

 head = bucket[index];

 traverse linked list until key matches

 perform operations

 transaction end

Most operations will likely not conflict  transactions proceed in parallel

Coarse-grain lock  serialize all operations

Fine-grained locks (one for each bucket)  more complexity, more storage,

 concurrent reads not allowed,

 concurrent writes to different elements not allowed

6

TM Implementation

Core Core

Cache Cache

• Caches track read-sets and write-sets

• Writes are made visible only at the end of the transaction

• At transaction commit, make your writes visible; others may abort

7

Detecting Conflicts – Basic Implementation

• Writes can be cached (can’t be written to memory) – if the

 block needs to be evicted, flag an overflow (abort transaction

 for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for

 each transaction

• When another transaction commits, compare its write set

 with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast

 write-set (transactions can commit in parallel if their

 write-sets do not intersect)

8

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Avoids deadlock

9

Design Space

• Data Versioning

 Eager: based on an undo log

 Lazy: based on a write buffer

• Conflict Detection

 Optimistic detection: check for conflicts at commit time

 (proceed optimistically thru transaction)

 Pessimistic detection: every read/write checks for

 conflicts (reduces work during commit)

10

“Lazy” Implementation

• An implementation for a small-scale multiprocessor with

 a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

11

“Lazy” Implementation

• When a transaction issues a read, fetch the block in

 read-only mode (if not already in cache) and set the

 rd-bit for that cache line

• When a transaction issues a write, fetch that block in

 read-only mode (if not already in cache), set the wr-bit

 for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must

 be aborted (or must rely on some software mechanism

 to handle saving overflowed data)

12

“Lazy” Implementation

• When a transaction reaches its end, it must now make

 its writes permanent

• A central arbiter is contacted (easy on a bus-based system),

 the winning transaction holds on to the bus until all written

 cache line addresses are broadcasted (this is the commit)

 (need not do a writeback until the line is evicted – must

 simply invalidate other readers of these cache lines)

• When another transaction (that has not yet begun to commit)

 sees an invalidation for a line in its rd-set, it realizes its

 lack of atomicity and aborts (clears its rd- and wr-bits and

 re-starts)

13

“Lazy” Implementation

• Lazy versioning: changes are made locally – the “master copy” is

 updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of

 the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and

 reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations

 for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will

 commit successfully

• Starvation is possible – need additional mechanisms

14

“Lazy” Implementation – Parallel Commits

• Writes cannot be rolled back – hence, before allowing

 two transactions to commit in parallel, we must ensure

 that they do not conflict with each other

• One possible implementation: the central arbiter can

 collect signatures from each committing transaction

 (a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects

 a possible conflict with the rd-wr-sets of transactions

 that are in the process of committing

• The “lazy” design can also work with directory protocols

15

“Eager” Implementation

• A write is made permanent immediately (we do not wait

 until the end of the transaction)

• This means that if some other transaction attempts a

 read, the latest value is returned and the memory may

 also be updated with this latest value

• Can’t lose the old value (in case this transaction is

 aborted) – hence, before the write, we copy the old

 value into a log (the log is some space in virtual memory

 -- the log itself may be in cache, so not too expensive)

 This is eager versioning

16

“Eager” Implementation

• Since Transaction-A’s writes are made permanent

 rightaway, it is possible that another Transaction-B’s

 rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has

 reached its end, hence, eager conflict detection): two

 transactions handling the same cache line and at least

 one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to

 Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has

 committed and can hand off the latest cache line to B

  neither transaction needs to abort

17

“Eager” Implementation

• Can lead to deadlocks: each transaction is waiting for the

 other to finish

• Need a separate (hw/sw) contention manager to detect

 such deadlocks and force one of them to abort

 Tr-A Tr-B

 write X write Y

 … …

 read Y read X

18

“Eager” Implementation

• Note that if Tr-B is doing a write, it may be forced to stall

 because Tr-A may have done a read and does not want to

 invalidate its cache line just yet

• If new reading transactions keep emerging, Tr-B may be

 starved – again, need other sw/hw mechanisms to handle

 starvation

• Since logs are stored in virtual memory, there is no cache

 overflow problem and transactions can be large

• Commits are inexpensive (no additional step required);

 Aborts are expensive, but rare (must reinstate data from logs)

19

Other Issues

• Nesting: when one transaction calls another

 flat nesting: collapse all nested transactions into one

 large transaction

 closed nesting: inner transaction’s rd-wr set are included

 in outer transaction’s rd-wr set on inner

 commit; on an inner conflict, only the

 inner transaction is re-started

 open nesting: on inner commit, its writes are committed

 and not merged with outer transaction’s

 commit set

• What if a transaction performs I/O?

• What if a transaction overflows out of cache?

20

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will

 fit in cache

• Transactions often commit successfully – less than 10%

 are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!

21

Discussion

• “Eager” optimizes the common case and does not waste

 energy when there’s a potential conflict

• TM implementations require relatively low hardware support

• Multiple commercial examples: Sun Rock, AMD ASF,

 IBM BG/Q, Intel Haswell

22

Title

• Bullet

