Lecture: Branch Prediction

 Topics: power/energy basics and DFS/DVFS,
branch prediction, bimodal/global/local/tournament
predictors, branch target buffer (Section 3.3,
notes on class webpage)



Power Consumption Trends

* Dyn power o activity X capacitance x voltage? x frequency

« Capacitance per transistor and voltage are decreasing,
but number of transistors is increasing at a faster rate;
hence clock frequency must be kept steady

 Leakage power Is also rising; is a function of transistor
count, leakage current, and supply voltage

* Power consumption is already between 100-150W In
high-performance processors today

* Energy = power x time = (dynpower + lkgpower) x time :



Power Vs. Energy

* Energy is the ultimate metric: it tells us the true “cost” of
performing a fixed task

* Power (energy/time) poses constraints; can only work fast
enough to max out the power delivery or cooling solution

* If processor A consumes 1.2x the power of processor B,
but finishes the task in 30% less time, its relative energy
IS 1.2 X 0.7 = 0.84; Proc-Ais better, assuming that 1.2x
power can be supported by the system



Reducing Power and Energy

- Can gate off transistors that are inactive (reduces leakage)

* Design for typical case and throttle down when activity
exceeds a threshold

* DFS: Dynamic frequency scaling -- only reduces frequency
and dynamic power, but hurts energy

* DVFS: Dynamic voltage and frequency scaling — can reduce
voltage and frequency by (say) 10%; can slow a program
by (say) 8%, but reduce dynamic power by 27%, reduce
total power by (say) 23%, reduce total energy by 17%

(Note: voltage drop - slow transistor - freq drop)



DFS and DVFS

* DFS

* DVFS



Pipeline without Branch Predictor

In the 5-stage pipeline, a branch completes in two cycles -
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch



Pipeline with Branch Predictor

Branch
Predictor

In the 5-stage pipeline, a branch completes in two cycles -
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch



1-Bit Bimodal Prediction

* For each branch, keep track of what happened last time
and use that outcome as the prediction

« What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (i=0;i<10;i++) { branch-1
}
for (j=0;j<20;j++) { branch-2
}



2-Bit Bimodal Prediction

 For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)

* If (counter >= 2), predict taken, else predict not taken

» Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

 Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
Into the branch predictor)

» Can be easily extended to N-bits (in most processors, Nx2)



Bimodal 1-Bit Predictor

10 bitsl

The table keeps track of what the branch did last time

10



Bimodal 2-Bit Predictor

10 bitsl

The table keeps track of the common-case
outcome for the branch

11



Correlating Predictors

 Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
Into one of 1024 counters) — captures the recent
“‘common case” for each branch

« Can we take advantage of additional information?

» If a branch recently went 01111, expect O; if it
recently went 11101, expect 1; can we have a
separate counter for each case?

» If the previous branches went 01, expect O; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors 12



Global Predictor

10 bitsl

| CAT

The table keeps track of the common-case
outcome for the branch/history combo

13



Local Predictor

Also a two-level predictor that only

_ uses local histories at the first level

Use 6 bits of branch PC to
Index into local history table

— > 10110111011001

14-Dbit history
iIndexes into

Table of 64 entries of 14-bit next level
histories for a single branch

14



Local Predictor

10 bits >

6 bits

64 entries

The table keeps track of the common-case
outcome for the branch/local-history combo

XOR

15



Local/Global Predictors

* Instead of maintaining a counter for each branch to
capture the common case,

- Maintain a counter for each branch and surrounding pattern

- If the surrounding pattern belongs to the branch being
predicted, the predictor is referred to as a local predictor

- If the surrounding pattern includes neighboring branches,
the predictor is referred to as a global predictor

16



Tournament Predictors

* A local predictor might work well for some branches or
programs, while a global predictor might work well for others

 Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Alpha 21264
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Table of 2-bit Total capacity: ?
saturating counters 17




Branch Target Prediction

* In addition to predicting the branch direction, we must
also predict the branch target address

* Branch PC indexes into a predictor table; indirect branches
might be problematic

* Most common indirect branch: return from a procedure —
can be easily handled with a stack of return addresses

18



Title

* Bullet

19



