
1

Lecture: Branch Prediction

• Topics: power/energy basics and DFS/DVFS,

 branch prediction, bimodal/global/local/tournament

 predictors, branch target buffer (Section 3.3,

 notes on class webpage)

2

Power Consumption Trends

• Dyn power a activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,

 but number of transistors is increasing at a faster rate;

 hence clock frequency must be kept steady

• Leakage power is also rising; is a function of transistor

 count, leakage current, and supply voltage

• Power consumption is already between 100-150W in

 high-performance processors today

• Energy = power x time = (dynpower + lkgpower) x time

3

Power Vs. Energy

• Energy is the ultimate metric: it tells us the true “cost” of

 performing a fixed task

• Power (energy/time) poses constraints; can only work fast

 enough to max out the power delivery or cooling solution

• If processor A consumes 1.2x the power of processor B,

 but finishes the task in 30% less time, its relative energy

 is 1.2 X 0.7 = 0.84; Proc-A is better, assuming that 1.2x

 power can be supported by the system

4

Reducing Power and Energy

• Can gate off transistors that are inactive (reduces leakage)

• Design for typical case and throttle down when activity

 exceeds a threshold

• DFS: Dynamic frequency scaling -- only reduces frequency

 and dynamic power, but hurts energy

• DVFS: Dynamic voltage and frequency scaling – can reduce

 voltage and frequency by (say) 10%; can slow a program

 by (say) 8%, but reduce dynamic power by 27%, reduce

 total power by (say) 23%, reduce total energy by 17%

 (Note: voltage drop  slow transistor  freq drop)

5

DFS and DVFS

• DFS

• DVFS

6

Pipeline without Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

7

Pipeline with Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

Branch

Predictor

8

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time

 and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

 while (1) {

 for (i=0;i<10;i++) { branch-1

 …

 }

 for (j=0;j<20;j++) { branch-2

 …

 }

 }

9

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:

 if the branch is taken: counter = min(3,counter+1)

 if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the

 prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same

 counter (some bits of the branch PC are used to index

 into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

10

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of

1K entries

Each

entry is

a bit

The table keeps track of what the branch did last time

11

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch

12

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating

 counter for each entry (or use 10 branch PC bits to index

 into one of 1024 counters) – captures the recent

 “common case” for each branch

• Can we take advantage of additional information?

 If a branch recently went 01111, expect 0; if it

 recently went 11101, expect 1; can we have a

 separate counter for each case?

 If the previous branches went 01, expect 0; if the

 previous branches went 11, expect 1; can we have

 a separate counter for each case?

Hence, build correlating predictors

13

Global Predictor

Branch PC

10 bits Table of

16K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch/history combo

Global history

CAT

14

Local Predictor

Branch PC

Table of

16K entries

of 2-bit

saturating

counters

Table of 64 entries of 14-bit

histories for a single branch

10110111011001

Use 6 bits of branch PC to

index into local history table

14-bit history

indexes into

next level

Also a two-level predictor that only

uses local histories at the first level

15

Local Predictor

Branch PC

6 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter

The table keeps track of the common-case

 outcome for the branch/local-history combo

Local history

10 bit entries

XOR

64 entries

10 bits

16

Local/Global Predictors

• Instead of maintaining a counter for each branch to

 capture the common case,

 Maintain a counter for each branch and surrounding pattern

 If the surrounding pattern belongs to the branch being

 predicted, the predictor is referred to as a local predictor

 If the surrounding pattern includes neighboring branches,

 the predictor is referred to as a global predictor

17

Tournament Predictors

• A local predictor might work well for some branches or

 programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to

 identify which predictor is best for each branch

Tournament

Predictor

Branch PC

Table of 2-bit

saturating counters

Local

Predictor

Global

Predictor

M

U

X

Alpha 21264:

1K entries in level-1

1K entries in level-2

4K entries

12-bit global history

4K entries

Total capacity: ?

18

Branch Target Prediction

• In addition to predicting the branch direction, we must

 also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches

 might be problematic

• Most common indirect branch: return from a procedure –

 can be easily handled with a stack of return addresses

19

Title

• Bullet

