
1

Lecture: Static ILP

• Topics: predication, speculation (Sections C.5, 3.2)

2

Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need

 to re-fetch on a mispredict

• For short loop bodies, control dependences can be

 converted to data dependences by using

 predicated/conditional instructions

3

Predicated or Conditional Instructions

if (R1 == 0)

 R2 = R2 + R4

else

 R6 = R3 + R5

 R4 = R2 + R3

R7 = !R1

R8 = R2

R2 = R2 + R4 (predicated on R7)

R6 = R3 + R5 (predicated on R1)

R4 = R8 + R3 (predicated on R1)

4

Predicated or Conditional Instructions

• The instruction has an additional operand that determines

 whether the instr completes or gets converted into a no-op

• Example: lwc R1, 0(R2), R3 (load-word-conditional)

 will load the word at address (R2) into R1 if R3 is non-zero;

 if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence

 (branches disappear) ; may need register copies for the

 condition or for values used by both directions

if (R1 == 0)

 R2 = R2 + R4

else

 R6 = R3 + R5

 R4 = R2 + R3

R7 = !R1 ; R8 = R2 ;

R2 = R2 + R4 (predicated on R7)

R6 = R3 + R5 (predicated on R1)

R4 = R8 + R3 (predicated on R1)

5

Complications

• Each instruction has one more input operand – more

 register ports/bypassing

• If the branch condition is not known, the instruction stalls

 (remember, these are in-order processors)

• Some implementations allow the instruction to continue

 without the branch condition and squash/complete later in

 the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate

6

Support for Speculation

• In general, when we re-order instructions, register renaming

 can ensure we do not violate register data dependences

• However, we need hardware support

 to ensure that an exception is raised at the correct point

 to ensure that we do not violate memory dependences

 st

 br

ld

7

Detecting Exceptions

• Some exceptions require that the program be terminated

 (memory protection violation), while other exceptions

 require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing

 the exception only implies potential performance loss

• In the former case, you want to defer servicing the

 exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode

 to indicate that it is speculative

8

Program-Terminate Exceptions

• When a speculative instruction experiences an exception,

 instead of servicing it, it writes a special NotAThing value

 (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the

 exception and the program terminates (it may not be

 desireable that the error is caused by an array access, but

 the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative

 instruction’s original location checks the register value and

 initiates recovery

9

Memory Dependence Detection

• If a load is moved before a preceding store, we must

 ensure that the store writes to a non-conflicting address,

 else, the load has to re-execute

• When the speculative load issues, it stores its address in

 a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a

 violation occurred for that address

• A special instruction (the sentinel) in the load’s original

 location checks to see if the address had a violation and

 re-executes the load if necessary

10

Title

• Bullet

