Lecture: Metrics to Evaluate Performance

» Topics: Benchmark suites, Performance equation,
Summarizing performance with AM, GM, HM

= Video 1: Using AM as a performance summary
* Video 2. GM, Performance Equation
* Video 3: AM vs. HM vs. GM

Measuring Performance

» Two primary metrics: wall clock time (response time for a
program) and throughput (jobs performed in unit time)

* To optimize throughput, must ensure that there is minimal
waste of resources

Benchmark Suites

* Performance is measured with benchmark suites: a
collection of programs that are likely relevant to the user

= SPEC CPU 2006: cpu-oriented programs (for desktops)
= SPECweb, TPC: throughput-oriented (for servers)
= EEMBC: for embedded processors/workloads

Summarizing Performance

» Consider 25 programs from a benchmark set — how do
we capture the behavior of all 25 programs with a
single number?

PL P2 P3
Sys-A 10 8 25
Sys-B 12 9 20
Sys-C 8 8 30

» Sum of execution times (AM)
» Sum of weighted execution times (AM)
» Geometric mean of execution times (GM)

Sum of Weighted Exec Times — Example

* We fixed a reference machine X and ran 4 programs
A, B, C, D on it such that each program ran for 1 second

* The exact same workload (the four programs execute
the same number of instructions that they did on
machine X) is run on a new machine Y and the
execution times for each program are 0.8, 1.1, 0.5, 2

* With AM of normalized execution times, we can conclude
that Y is 1.1 times slower than X — perhaps, not for all
workloads, but definitely for one specific workload (where
all programs run on the ref-machine for an equal #cycles)

Summarizing Performance

» Consider 25 programs from a benchmark set — how do
we capture the behavior of all 25 programs with a
single number?

PL P2 P3
Sys-A 10 8 25
Sys-B 12 9 20
Sys-C 8 8 30

» Sum of execution times (AM)

» Sum of weighted execution times (AM)

» Geometric mean of execution times (GM)
(may find inconsistencies here)

GM Example

Computer-A Computer-B. Computer-C
Pl 1 sec 10 secs 20 secs
P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B
(i) C is ~1.6 times faster

* For (i) to be true, P1 must occur 100 times for every
occurrence of P2

 With the above assumption, (ii) is no longer true

Hence, GM can lead to inconsistencies

Summarizing Performance

* GM: does not require a reference machine, but does
not predict performance very well
» So we multiplied execution times and determined
that sys-Ais 1.2x faster...but on what workload?

* AM: does predict performance for a specific workload,
but that workload was determined by executing
programs on a reference machine

» Every year or so, the reference machine will have
to be updated

CPU Performance Equation

* Clock cycle time = 1/ clock speed

« CPU time = clock cycle time x cycles per instruction x
number of instructions

* Influencing factors for each:
» clock cycle time: technology and pipeline
» CPI: architecture and instruction set design
» Instruction count: instruction set design and compiler

* CPI (cycles per instruction) or IPC (instructions per cycle)
can not be accurately estimated analytically

An Alternative Perspective - |

« Each program is assumed to run for an equal number
of cycles, so we’re fair to each program

* The number of instructions executed per cycle is a
measure of how well a program is doing on a system

* The appropriate summary measure is sum of IPCs or
AM of IPCs = 1.2 instr + 1.8 instr + 0.5 instr
cycC cycC cycC

 This measure implicitly assumes that 1 instr in prog-A
has the same importance as 1 instr in prog-B

10

An Alternative Perspective - |l

« Each program is assumed to run for an equal number
of instructions, so we're fair to each program

* The number of cycles required per instruction is a
measure of how well a program is doing on a system

* The appropriate summary measure is sum of CPIs or
AM of CPIs = 0.8 cyc + 0.6 cyc + 2.0 cyc
INnstr Instr Instr

 This measure implicitly assumes that 1 instr in prog-A
has the same importance as 1 instr in prog-B

11

AM and HM

* Note that AM of IPCs =1/ HM of CPIs and
AM of CPIs =1/ HM of IPCs

 So If the programs in a benchmark suite are weighted
such that each runs for an equal number of cycles, then
AM of IPCs or HM of CPlIs are both appropriate measures

* If the programs in a benchmark suite are weighted such

that each runs for an equal number of instructions, then
AM of CPls or HM of IPCs are both appropriate measures

12

AM vs. GM

 GM of IPCs =1/ GM of CPIs

* AM of IPCs represents thruput for a workload where each
program runs sequentially for 1 cycle each; but high-IPC
programs contribute more to the AM

* GM of IPCs does not represent run-time for any real

workload (what does it mean to multiply instructions?); but
every program’s |IPC contributes equally to the final measure

13

Speedup Vs. Percentage

* “Speedup” is a ratio = old exec time / new exec time

- “Improvement”, “Increase”, “Decrease” usually refer to
percentage relative to the baseline
= (new perf — old perf) / old perf

« A program ran in 100 seconds on my old laptop and in 70
seconds on my new laptop
= What is the speedup?
= What is the percentage increase in performance?
= What is the reduction in execution time?

14

Title

* Bullet

15

