
1

Lecture 8: Branch Prediction, Dynamic ILP

• Topics: branch prediction, out-of-order processors

(Sections 2.3-2.6)

2

Control Hazards

• In the 5-stage in-order processor: assume always taken

or assume always not taken; if the branch goes the other

way, squash mis-fetched instructions (momentarily,

forget about branch delay slots)

• Modern in-order and out-of-order processors: dynamic

branch prediction; instead of a default not-taken

assumption, either predict not-taken, or predict

taken-to-X, or predict taken-to-Y

• Branch predictor: a cache of recent branch outcomes

3

Pipeline without Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

4

Pipeline with Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

Branch

Predictor

5

Branch Mispredict Penalty

• Assume: no data or structural hazards; only control

hazards; every 5th instruction is a branch; branch

predictor accuracy is 90%

• Slowdown = 1 / (1 + stalls per instruction)

• Stalls per instruction = % branches x %mispreds x penalty

= 20% x 10% x 1

= 0.02

• Slowdown = 1/1.02 ; if penalty = 20, slowdown = 1/1.4

6

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time

and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

while (1) {

for (i=0;i<10;i++) { branch-1

…

}

for (j=0;j<20;j++) { branch-2

…

}

}

7

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:

if the branch is taken: counter = min(3,counter+1)

if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the

prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same

counter (some bits of the branch PC are used to index

into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

8

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of

1K entries

Each

entry is

a bit

The table keeps track of what the branch did last time

9

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counterThe table keeps track of the common-case

outcome for the branch

10

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating

counter for each entry (or use 10 branch PC bits to index

into one of 1024 counters) – captures the recent

“common case” for each branch

• Can we take advantage of additional information?

 If a branch recently went 01111, expect 0; if it

recently went 11101, expect 1; can we have a

separate counter for each case?

 If the previous branches went 01, expect 0; if the

previous branches went 11, expect 1; can we have

a separate counter for each case?

Hence, build correlating predictors

11

Global Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counterThe table keeps track of the common-case

outcome for the branch/history combo

Global history

XOR

12

Local Predictor

Branch PC

Table of

16K entries

of 2-bit

saturating

counters

Table of 64 entries of 14-bit

histories for a single branch

10110111011001

Use 6 bits of branch PC to

index into local history table

14-bit history

indexes into

next level

Also a two-level predictor that only

uses local histories at the first level

13

Local Predictor

Branch PC

6 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter

The table keeps track of the common-case

outcome for the branch/local-history combo

Local history

10 bit entries

XOR

64 entries

10 bits

14

Local/Global Predictors

• Instead of maintaining a counter for each branch to

capture the common case,

 Maintain a counter for each branch and surrounding pattern

 If the surrounding pattern belongs to the branch being

predicted, the predictor is referred to as a local predictor

 If the surrounding pattern includes neighboring branches,

the predictor is referred to as a global predictor

15

Tournament Predictors

• A local predictor might work well for some branches or

programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to

identify which predictor is best for each branch

Tournament

Predictor

Branch PC

Table of 2-bit

saturating counters

Local

Predictor

Global

Predictor

M

U

X

Alpha 21264:

1K entries in level-1

1K entries in level-2

4K entries

12-bit global history

4K entries

Total capacity: ?

16

Branch Target Prediction

• In addition to predicting the branch direction, we must

also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches

might be problematic

• Most common indirect branch: return from a procedure –

can be easily handled with a stack of return addresses

17

An Out-of-Order Processor Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

T1

T2

T3

T4

T5

T6

Reorder Buffer (ROB)

T1  R1+R2

T2  T1+R3

BEQZ T2

T4  T1+T2

T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File

R1-R32

Results written to

ROB and tags

broadcast to IQ

18

Title

• Bullet

