Filtering Images in the Spatial Pomain

Ross Whitaker
SCI Institute, School of Computing
University of Utah

Overview

- Correlation and convolution
- Linear filtering
 - Smoothing, kernels, models
 - Petection
 - Perivatives
- Nonlinear filtering
 - Median filtering
 - Bilateral filtering
 - Neighborhood statistics and nonlocal filtering

Cross Correlation

- · Operation on image neighborhood and small ...
 - "mask", "filter", "stencil", "kernel"
- Linear operations within a moving window

Cross Correlation

• 17
$$g(x) = \sum_{s=-a}^{a} w(s) f(x+s)$$

• 20
$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Correlation: Technical Petails

- Boundary conditions
 - Pad image with amount (a,b)
 - Constant value or repeat edge values
 - Cyclical boundary conditions
 - Wrap or mirroring

Correlation: Technical Petails

- Boundaries
 - Can also modify kernel no long correlation
- For analysis
 - Image domains infinite
 - Data compact (goes to zero far away from origin)

$$g(x,y) = \sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} w(s,t) f(x+s,y+t)$$

Correlation: Properties

Shift invariant

$$g=w\circ f \qquad g(x,y)=w(x,y)\circ f(x,y)$$

$$w(x,y)\circ f(x-x_0,y-y_0)=\sum_{s=-\infty}^\infty\sum_{t=-\infty}^\infty w(s,t)f(x-x_0+s,y-y_0+t)=g(x-x_0,y-y_0)$$

• Linear $w \circ (\alpha e + \beta f) = \alpha w \circ e + \beta w \circ f$

Compact notation

$$C_{wf} = w \circ f$$

Filters: Considerations

- Normalize
 - Sums to one
 - Sums to zero (some cases, later)
- Symmetry
 - Left, right, up, down
 - Rotational
- Special case: auto correlation

$$C_{ff} = f \circ f$$

Examples 1

1 1 1 1/9 * 1 1 1 1 1 1

Univ of Utah, CS6640 2009

Examples 2

	1	1	1
1/9 *	1	1	1
	1	1	1

Univ of Utah, CS6640 2009

Smoothing and Noise

Noisy image

5x5 box filter

Noise Analysis

- Consider an a simple image I() with additive, uncorrelated, zero-mean noise of variance s
- What is the expected rms error of the corrupted image?
- If we process the image with a box filter of size 2a+1 what is the expected error of the filtered image?

$$\mathrm{RMSE} = \left(\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \left(\tilde{\mathbf{I}}(\mathbf{x}, \mathbf{y}) - \mathbf{I}(\mathbf{x}, \mathbf{y})\right)^2\right)^{\frac{1}{2}}$$

Cross Correlation Continuous Case

- f, w must be "integrable"
 - Must die off fast enough so that integral is finite

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(s,t)f(x+s,y+t)dsdt$$

- Same properties as discrete case
 - Linear
 - Shift invariant

Other Filters

- Pisk
 - Circularly symmetric, jagged in discrete case
- Gaussians
 - Circularly symmetric, smooth for large enough stdev
 - Must normalize in order to sum to one
- Derivatives discrete/finite differences
 - Operators

Pattern Matching/Petection

• The optimal (highest) response from a filter is the autocorrelation evaluated at position zero

$$\max_{\bar{x}} C_{ff}(\bar{x}) = C_{ff}(0) = \int f(\bar{s})f(\bar{s})d\bar{s}$$

- A filter responds best when it matches a pattern that looks itself
- Strategy
 - Detect objects in images by correlation with "matched" filter

Match Filter Example

Trick: make sure kernel sums to zero

Univ of Utah, CS6640 2009

Match Filter Example

Match Filter Example

Perivatives: Finite Differences

$$\frac{\partial f}{\partial x} \approx \frac{1}{2h} \left(f(x+1,y) - f(x-1,y) \right)$$

$$\frac{\partial f}{\partial x} pprox w_{dx} \circ f \qquad w_{dx} = \boxed{-\frac{1}{2} \mid 0 \mid \frac{1}{2}}$$

$$\frac{\partial f}{\partial y} \approx w_{dy} \circ f \qquad w_{dy} = \boxed{ \begin{array}{c} -\frac{1}{2} \\ \hline 0 \\ \hline \frac{1}{2} \end{array} }$$

Perivative Example

Univ of Utah, CS6640 2009

Convolution

Discrete

$$g(x,y) = w(x,y) * f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

Continuous

$$g(x,y) = w(x,y) * f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(s,t)f(x-s,y-t)dsdt$$

- Same as cross correlation with kernel transposed around each axis
- The two operations (correlation and convolution) are the same if the kernel is symmetric about axes

$$g = w \circ f = w^* * f$$

 w^* reflection of w

Convolution: Properties

- Shift invariant, linear
- Cummutative

$$f * g = g * f$$

Associative

$$f * (g * h) = (f * g) * h$$

- Others (discussed later):
 - Perivatives, convolution theorem, spectrum...

Computing Convolution

- Compute time

 - MxM maskNxN image

O(M²N²)

"for" loops are nested 4 deep

· Special case: separable

Two 10 kernels

$$w = \overbrace{w_x * w_y}$$

$$w*f = (w_x*w_y)*f = w_x*(w_y*f)$$

$$0(M^2N^2) 0(MN^2)$$

Separable Kernels

Examples

- Box/rectangle
- Bilinear interpolation
- Combinations of partial derivatives
 - $d^2f/dxdy$
- Gaussian
 - Only filter that is <u>both</u> circularly symmetric <u>and</u> separable

- Counter examples
 - Disk
 - Cone
 - Pyramid

Nonlinear Methods For Filtering

- Median filtering
- Bilateral filtering
- · Neighborhood statistics and nonlocal filtering

- For each neighborhood in image
 - Sliding window
 - Usually odd size (symmetric) 5x5, 7x7,...
- Sort the greyscale values
- Set the center pixel to the median
- Important: use "Jacobi" updates
 - Separate input and output buffers
 - All statistics on the original image

Median Filter

Issues

- Boundaries
 - Compute on pixels that fall within window
- Computational efficiency
 - · What is the best algorithm?

Properties

- Removes outliers (replacement noise salt and pepper)
- Window size controls size of structures
- Preserves straight edges, but rounds corners and features

Median vs Gaussian

Original + Gaussian Noise 3x3 Median 3x3 Box 28

Replacement Noise

- Also: "shot noise", "salt&pepper"
- Replace certain % of pixels with samples from pdf
- Best strategy: filter to avoid <u>outliers</u>

Univ of Utah, CS6640 2009

Smoothing of S&P Noise

- It's not zero mean (locally)
- Averaging produces local biases

Median 3x3

Median 5x5

Median 3x3

Median 5x5

Iterate

Median 3x3

2x Median 3x3

· Image model: piecewise constant (flat)

Order Statistics

- Median is special case of order-statistics filters
- Instead of weights based on neighborhoods, weights are based on ordering of data

Neighborhood
$$X_1,X_2,\ldots,X_N$$
 $X_{(1)}\leq X_{(2)}\leq \ldots \leq X_{(N)}$ Filter $F(X_1,X_2,\ldots,X_N)=\alpha_1X_{(1)}+\alpha_2X_{(2)}+\ldots+\alpha_NX_{(N)}$ Neighborhood average (box) M edian filter $\alpha_i=1/N$ $\alpha_i=\begin{cases} 1 & i=(N+1)/2 \\ 0 & \text{otherwise} \end{cases}$

Trimmed average (outlier removal)

$$oldsymbol{lpha_i} = \left\{egin{array}{ll} 1/M & (N-M+1)/2 \leq i \leq (N+M+1)/2 \ 0 & ext{otherwise} \end{array}
ight.$$

Piecewise Flat Image Models

- Image piecewise flat -> average only within similar regions
- Problem: don't know region boundaries

Piecewise-Flat Image Models

- Assign probabilities to other pixels in the image belonging to the same region
- Two considerations
 - <u>Distance:</u> far away pixels are less likely to be same region
 - <u>Intensity</u>: pixels with different intensities are less likely to be same region

Piecewise-Flat Images and Pixel Averaging

Distance (kernel/pdf)

$$G(\mathbf{x}_i - \mathbf{x}_j)$$

Prob pixel belongs to same region as i position

Pistance (pdf)

$$H(f_i - f_j)$$

Bilateral Filter

- Neighborhood sliding window
- Weight contribution of neighbors according to:

$$f_i \leftarrow k_i^{-1} \sum_{j \in N} f_j G(\mathbf{x}_i - \mathbf{x}_j) H(f_i - f_j)$$
$$k_i = \sum_{j \in N} G(\mathbf{x}_i - \mathbf{x}_j) H(f_i - f_j)$$

- · G is a Gaussian (or lowpass), as is H, N is neighborhood,
 - Often use $G(r_{ii})$ where r_{ii} is distance between pixels
 - Update must be normalized for the samples used in this (particular) summation
- Spatial Gaussian with extra weighting for intensity
 - Weighted average in neighborhood with downgrading of intensity outliers

Bilateral Filtering

Gaussian Blurring

Bilateral

Bilateral Filtering

Gaussian Blurring

Bilateral

Nonlocal Averaging

- Recent algorithm
 - NL-means, Baudes et al., 2005
 - UINTA, Awate & Whitaker, 2005
- Different model
 - No need for piecewise-flat
 - Images consist of pixels with similar neighborhoods
 - Scattered around
 - General area of a pixel
 - All around
- Idea
 - Average pixels with similar neighborhoods

Nonlocal Averaging

Strategy:

- Average pixels to alleviate noise
- Combine pixels with similar neighborhoods

Formulation

 n_{i,j} - vector of pixels values, indexed by j, from neighborhood around pixel i

Nonlocal Averaging Formulation

Distance between neighborhoods

$$d_{i,k} = d(n_i, n_k) = ||n_i - n_k|| = \left(\sum_{j=1}^{N} (n_{i,j} - n_{k,j})^2\right)^{\frac{1}{2}}$$

· Kernel weights based on distances

$$w_{i,j} = K(d_{i,j}) = e^{-\frac{d_{i,j}^2}{2\sigma^2}}$$

· Pixel values: fi

Averaging Pixels Based on Weights

· For each pixel, i, choose a set of pixel locations

$$-j=1,...,M$$

Average them together based on neighborhood weights

$$g_i \longleftarrow \frac{1}{\sum_{j=1}^{M} w_{i,j}} \sum_{j=1}^{M} w_{i,j} f_j$$

Nonlocal Averaging

Univ of Utah, CS6640 2009

Some Petails

- Window sizes: good range is 5x5->11x11
- How to choose samples:
 - Random samples from around the image
 - · UINTA, Awate&Whitaker
 - Block around pixel (bigger than window, e.g. 51x51)
 - · NL-means
- Iterate
 - UNITA: smaller updates and iterate

NL-Means Algorithm

- For each pixel, p
 - Loop over set of pixels nearby
 - Compare the neighborhoods of those pixels to the neighborhood of p and construct a set of weights
 - Replace the value of p with a weighted combination of values of other pixels
- Repeat... but 1 iteration is pretty good

Noisy image (range 0.0-1.0)

Bilateral filter (3.0, 0.1)

Bilateral filter (3.0, 0.1)

NL means (7, 31, 1.0)

Bilateral filter (3.0, 0.1)

NL means (7, 31, 1.0)

Less Noisy Example

Less Noisy Example

Checkerboard With Noise

Quality of Penoising

• o, joint entropy, and RMS- error vs. number of iterations

MRI Head

Univ of Utah, CS6640 2009

MRI Head

Fingerprint

Fingerprint

Original

Noisy

Filtered

Fractal

Piecewise Constant

- Several 10s of Iterations
- Tends to obliterate rare events

Texture, Structure

