Filtering Images in the Spatial Domain

Ross Whitaker
SCI Institute, School of Computing
University of Utah

Overview

- Correlation and convolution
- Linear filtering
- Smoothing, kernels, models
- Detection
- Derivatives
- Nonlinear filtering
- Median filtering
- Bilateral filtering
- Neighborhood statistics and nonlocal filtering

Cross Correlation

- Operation on image neighborhood and small ...
- "mask", "filter", "stencil", "kernel"
- Linear operations within a moving window

Cross Correlation

-10 $g(x)=\sum_{s=-a}^{a} w(s) f(x+s)$

- $20 g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$

Univ of Utah, CS6640 2009

Correlation: Technical Details

- Boundary conditions
- Pad image with amount (a, b)
- Constant value or repeat edge values
- Cyclical boundary conditions
- Wrap or mirroring

Univ of Utah, CS6640 2009

Correlation: Technical Details

- Boundaries
- Can also modify kernel - no long correlation
- For analysis
- Image domains infinite
- Data compact (goes to zero far away from origin)

$$
g(x, y)=\sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} w(s, t) f(x+s, y+t)
$$

Correlation: Properties

- Shift invariant

$$
\begin{gathered}
g=w \circ f \quad g(x, y)=w(x, y) \circ f(x, y) \\
w(x, y) \circ f\left(x-x_{0}, y-y_{0}\right)=\sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} w(s, t) f\left(x-x_{0}+s, y-y_{0}+t\right)=g\left(x-x_{0}, y-y_{0}\right)
\end{gathered}
$$

- Linear $w \circ(\alpha e+\beta f)=\alpha w \circ e+\beta w \circ f$

Compact notation

$$
C_{w f}=w \circ f
$$

Filters: Considerations

- Normalize
- Sums to one
- Sums to zero (some cases, later)
- Symmetry
- Left, right, up, down
- Rotational
- Special case: auto correlation

$$
C_{f f}=f \circ f
$$

Examples 1

Examples 2

Smoothing and Noise

Noisy image

5×5 box filter

Noise Analysis

- Consider an a simple image I() with additive, uncorrelated, zero-mean noise of variance s
- What is the expected rms error of the corrupted image?
- If we process the image with a box filter of size $2 a+1$ what is the expected error of the filtered image?

$$
\operatorname{RMSE}=\left(\frac{1}{|\mathcal{D}|} \sum_{(\mathrm{x}, \mathrm{y}) \in \mathcal{D}}(\tilde{\mathrm{I}}(\mathrm{x}, \mathrm{y})-\mathrm{I}(\mathrm{x}, \mathrm{y}))^{2}\right)^{\frac{1}{2}}
$$

Cross Correlation Continuous Case

- f, w must be "integrable"
- Must die off fast enough so that integral is finite

$$
g(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(s, t) f(x+s, y+t) d s d t
$$

- Same properties as discrete case
- Linear
- Shift invariant

Other Filters

- Disk
- Circularly symmetric, jagged in discrete case
- Gaussians
- Circularly symmetric, smooth for large enough stdev
- Must normalize in order to sum to one
- Derivatives - discrete/finite differences
- Operators

Pattern Matching/Detection

- The optimal (highest) response from a filter is the autocorrelation evaluated at position zero

$$
\max _{\bar{x}} C_{f f}(\bar{x})=C_{f f}(0)=\int f(\bar{s}) f(\bar{s}) d \bar{s}
$$

- A filter responds best when it matches a pattern that looks itself
- Strategy
- Detect objects in images by correlation with "matched" filter

Match Filter Example

Trick: make sure kernel sums to zero

Univ of Utah, CS6640 2009

Match Filter Example

Match Filter Example

Derivatives: Finite Differences

$$
\begin{gathered}
\frac{\partial f}{\partial x} \approx \frac{1}{2 h}(f(x+1, y)-f(x-1, y)) \\
\frac{\partial f}{\partial x} \approx w_{d x} \circ f \quad w_{d x}=-\frac{1}{2}|0| \frac{1}{2} \\
\frac{\partial f}{\partial y} \approx w_{d y} \circ f \quad w_{d y}=\begin{array}{|c|}
\hline-\frac{1}{2} \\
\hline \frac{1}{2} \\
\hline
\end{array}
\end{gathered}
$$

Derivative Example

Univ of Utah, CS6640 2009

GoMyOMEANM

- Discrete

$$
g(x, y)=w(x, y) * f(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x-s, y-t)
$$

- Continuous

$$
g(x, y)=w(x, y) * f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(s, t) f(x-s, y-t) d s d t
$$

- Same as cross correlation with kernel transposed around each axis
- The two operations (correlation and convolution) are the same if the kernel is symmetric about axes

$$
g=w \circ f=w^{*} * f \quad w^{*} \text { reflection of } \mathrm{w}
$$

Convolution: Properties

- Shift invariant, linear
- Cummutative

$$
f * g=g * f
$$

- Associative

$$
f *(g * h)=(f * g) * h
$$

- Others (discussed later):
- Derivatives, convolution theorem, spectrum...

Computing Convolution

- Compute time - MxM mask
- NxN image $\quad 0\left(M^{2} \mathrm{~N}^{2}\right)$
"for" loops are nested 4 deep
- Special case: separable

Two 10 kernels

$$
w=w_{x} * w_{y}
$$

$$
w * f=(\underbrace{\left.w_{x} * w_{y}\right) * f}_{0\left(\mathbf{M}^{2} \mathbf{N}^{2} \mathbf{)}\right.}=\underbrace{w_{x} *\left(w_{y} * f\right)}_{\mathbf{0 (\mathbf { M N } ^ { 2 })}}
$$

Separable Kernels

- Examples
- Box/rectangle
- Bilinear interpolation
- Combinations of partial derivatives
- $d^{2} f / d x d y$
- Gaussian
- Only filter that is both circularly symmetric and separable
- Counter examples
- Disk
- Cone
- Pyramid

Nonlinear Methods For Filtering

- Median filtering
- Bilateral filtering
- Neighborhood statistics and nonlocal filtering

Median Filtering

- For each neighborhood in image
- Sliding window
- Usually odd size (symmetric) $5 \times 5,7 \times 7$,...
- Sort the greyscale values
- Set the center pixel to the median
- Important: use "Jacobi" updates
- Separate input and output buffers
- All statistics on the original image

Median Filter

- Issues
- Boundaries
- Compute on pixels that fall within window
- Computational efficiency
- What is the best algorithm?
- Properties
- Removes outliers (replacement noise - salt and pepper)
- Window size controls size of structures
- Preserves straight edges, but rounds corners and features

Median vs Gaussian

Replacement Noise

- Also: "shot noise", "saltधppepper"
- Replace certain \% of pixels with samples from pdf
- Best strategy: filter to avoid outliers

Smoothing of SEP Noise

- It's not zero mean (locally)
- Averaging produces local biases

Univ of Utah, CS6640 2009

Median Filtering

Median 3×3

Median 5×5
Univ of Utah, CS6640 2009

Median Filtering

Median Filtering

- Iterate

Median 3×3

2x Median 3×3
Univ of Utah, CS6640 2009

Median Filtering

- Image model: piecewise constant (flat)

Univ of Utah, CS6640 2009

Order Statistics

- Median is special case of order-statistics filters
- Instead of weights based on neighborhoods, weights are based on ordering of data

Neighborhood	Ordering
$X_{1}, X_{2}, \ldots, X_{N}$	$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(N)}$

Filter $\quad F\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\alpha_{1} X_{(1)}+\alpha_{2} X_{(2)}+\ldots+\boldsymbol{\alpha}_{N} X_{(N)}$

Neighborhood average (box)
Median filter

$$
\alpha_{i}=1 / N \quad \alpha_{i}= \begin{cases}1 & i=(N+1) / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Trimmed average (outlier removal)

$$
\alpha_{i}= \begin{cases}1 / M & (N-M+1) / 2 \leq i \leq(N+M+1) / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Piecewise Flat Image Models

- Image piecewise flat $->$ average only within similar regions
- Problem: don't know region boundaries

Univ of Utah, CS6640 2009

Piecewise-Flat Image Models

- Assign probabilities to other pixels in the image belonging to the same region
- Two considerations
- Distance: far away pixels are less likely to be same region
- Intensity: pixels with different intensities are less likely to be same region

Piecewise-Flat Images and Pixel Averaging

Distance (kernel/pdf)

$$
G\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
$$

Distance (pdf)

$$
H\left(f_{i}-f_{j}\right)
$$

Bilateral Filter

- Neighborhood - sliding window
- Weight contribution of neighbors according to:

$$
\begin{array}{r}
f_{i} \leftarrow k_{i}^{-1} \sum_{j \in N} f_{j} G\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) H\left(f_{i}-f_{j}\right) \\
k_{i}=\sum_{j \in N} G\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) H\left(f_{i}-f_{j}\right)
\end{array}
$$

- G is a Gaussian (or lowpass), as is H. N is neighborhood,
- Often use $G\left(r_{i j}\right)$ where $r_{i j}$ is distance between pixels
- Update must be normalized for the samples used in this (particular) summation
- Spatial Gaussian with extra weighting for intensity
- Weighted average in neighborhood with downgrading of intensity outliers

Bilateral Filtering

Bilateral Filtering

Gaussian Blurring
Univ of Utah, CS6640 2009
Bilateral

Nonlocal Averaging

- Recent algorithm
- NL-means, Baudes et al., 2005
- UINTA, Awate \& Whitaker, 2005
- Different model
- No need for piecewise-flat
- Images consist of pixels with similar neighborhoods
- Scattered around
- General area of a pixel
- All around
- Idea
- Average pixels with similar neighborhoods

Nonlocal Averaging

- Strategy:
- Average pixels to alleviate noise
- Combine pixels with similar neighborhoods
- Formulation
- $n_{i, j}$ - vector of pixels values, indexed by j, from neighborhood around pixel i

Nonlocal Averaging Formulation

- Distance between neighborhoods

$$
d_{i, k}=d\left(n_{i}, n_{k}\right)=\left\|n_{i}-n_{k}\right\|=\left(\sum_{j=1}^{N}\left(n_{i, j}-n_{k, j}\right)^{2}\right)^{\frac{1}{2}}
$$

- Kernel weights based on distances

$$
w_{i, j}=K\left(d_{i, j}\right)=e^{-\frac{d_{i, j}^{2}}{2 \sigma^{2}}}
$$

- Pixel values: f_{i}

Averaging Pixels Based on Weights

- For each pixel, i, choose a set of pixel locations
$-j=1, \ldots ., M$
- Average them together based on neighborhood weights

$$
g_{i} \longleftarrow \frac{1}{\sum_{j=1}^{M} w_{i, j}} \sum_{j=1}^{M} w_{i, j} f_{j}
$$

Nonlocal Averaging

Univ of Utah, CS6640 2009

Some Details

- Window sizes: good range is $5 \times 5->11 \times 11$
- How to choose samples:
- Random samples from around the image
- UINTA, Awate\&Whitaker
- Block around pixel (bigger than window, e.g. 51 $\times 511$
- NL-means
- Iterate
- UNITA: smaller updates and iterate

NL-Means Algorithm

- For each pixel, p
- Loop over set of pixels nearby
- Compare the neighorhoods of those pixels to the neighborhood of p and construct a set of weights
- Replace the value of p with a weighted combination of values of other pixels
- Repeat... but 1 iteration is pretty good

Results

Noisy image (range 0.0-1.0)
Bilateral filter (3.0, 0.1)

Results

Bilateral filter (3.0, 0.1)

NL means (7, 31, 1.0)

Results

Univ of Utah, CS6640 2009

Less Noisy Example

Univ of Utah, CS6640 2009

Results

Univ of Utah, CS6640 2009

Checkerboard With Noise

Univ of Utah, CS6640 2009

Quality of Denoising

- σ, joint entropy, and RMS- error vs. number of iterations

MRI Head

MRI Head

Fingerprint

Univ of Utah, CS6640 2009

Fingerprint

Results

Original

Noisy

Filtered

Results

Results

Original

Noisy

Filtered

Fractal

Original

Noisy

Filtered

Piecewise Constant

- Several 10s of Iterations
- Tends to obliterate rare events

Univ of Utah, CS6640 2009

Texture, Structure

