An Introduction to Images

CS6640/BIOENG6640

Ross Whitaker
SCI Institute, School of Computing
University of Utah

Module 1: Goals

- Understand images as mappings
- Understand the difference - continuous vs discrete
- Be able to identify domain and range of an image in a precise way
- Know several examples of images
- How they are used
- How they are formed
- Understand domain topology, physical dimensions, and resolution of images
- Understand and be able to use le.g. reason about and implement)
- Arithmetic operations, neighborhoods, adjacency, connected components

What Is An Digital Image?

- A file you download from the web le.g. image.jpg)
- What you see on the screen
- An array (regular grid) of data values
- A mapping from one domain to another
- A discrete sampling (approximation) of a function

Image As A Mapping (Function)

$f: \mathcal{D} \mapsto \mathcal{R}$
$\mathcal{D} \subset \Re^{n}$ and $\mathcal{R} \subset \Re^{\mathrm{m}}$

Image As A Mapping Issues

- Dimensionality of domain $(n=$?)
- Dimensionality of range ($m=$?)
- Typically use shorthand of \mathbb{R}^{n} or \mathbb{R}^{m}
- Discrete or continuous
- Discrete reasoning/math
- Continuous math (calculus) \rightarrow discrete approximation
- Issues for both domain and range

Examples of "Images" as Functions

Images As 20 Functions

30 Images - Volumes

Impossible to graph:
Slicing
Volume rendering
Scientific visualization

Multivalued Images

- Color images: mappings to some subset of R3
- Color spaces: RBG, HSV, etc.
- Spectral imagery
- Measure energy at different bands within the electromagnetic spectrum
- E.g. Satellite images

Image As Grid of Values

Unstructured grid

- Two views
- Domain is a discrete set of samples
- Samples are points from an underlying continuous function
- How is the grid organized?
- Unstructured
- Points specified by position and value
- Structured grids
- Position inferred from structure/index
- 10, 20, 30,
- Sizes w,wxh,wxhxd

Where Do Digital Images Come From?

- Digitizing film or paper
- Rasterize, sample reflectance/transmission on grid

CCD Cameras

X-Rays

X-Ray Images

Computed Tomography

Reconstruction
 1

Volume

CT (CAT)

Magnetic Resonance Imaging

Random orientation (water molecules)

Magnetic field align spins

Detect/measure field

Spins become
random Igenerate field)

MRI

Nuclear Medicine PET, SPECT, ...

Reconstruction
\qquad

Serial Sectioning

Serial Section Transmission Electron Microscopy

Examples

- Quality control of surface-mount packaging

- Retinal architecture from serial section TEM
- Image-based phenotyping

Fingerprint images

- Ink technique
- spread ink
- press on paper
- capture with CCD camera or scanner
- Latent fingerprints
- Live-scan
- Optical sensors
- Capacitive sensor
- Thermal sensor
- Pizoelectric (pressure)

Fingerprint matching

- Fingerprint patterns are unique to the individual
- Matching
- using the ridges directly is hard
- often singularity points are used
- Local: Minutiae
- Global: Loop, delta, ...

Min

Tolga Tasdizen - ECE 6962 Lecture Notes, U. of Utah

Data Structures for Images

- Typically "objects"
- Matlab - Arrays
- Toolkits define image objects
- Header information
- Dimension, size, dałałype, grid spacing (resolution)
- "Metadata" (e.g. annotation)
- Data options
- Nested arrays
- Unroll structured grid into 10 array
- Coherent chunk of memory
- Pointer to memory
- Often controlled access to memory (e.g. Matlab and speed)

Data listed in row-major order

What Appears on Screen/Monitor?

- A mapping from abstract image to computer/graphics hardware
- Processing for this mapping is one goal of IP
- Typically
- Values (greyscale or color) map to brightness of screen pixels (proportionally)
- Domain of image (e.g. grid) maps to screen relestate (proportionally)

How do colors and pixel positions get mapped?

Image Viewers Displays

- Conventions to make things easy
- E.g. 24 bit RGB mapped to RGB of screen buffer
- "Color" images
- 8 or 16 bit unsigned data is displayed as "greyscale"
- Generally $R=G=B$ (approximately)
- Other data
- Negative numbers
- Floats
- Larger integers
- Special numbers such as NaN, etc.

```
Depends on the viewer. Typically min and max of the data set are set to "black" and "white", respectively, and the rest are mapped propotionally. The viewer doesn't always make clear what it is doing. Beware when looking at nonstandard data.
```


Image Viewers

- Matlab - built in display
- "imview(arg1)"
- Photoshop
- Native on OS
- Preview (Mac OS)
- "Windows Picture and Fax Viewer"
- Web browsers
- Open source
- Gimp
- XV

File Formats

File Formats

- Header
- Magic number - identifies file type
- Domain
- Dimensions
- Sizes: height, width, depth...
- Range
- Channels - \# values per pixel
- Data type
- Data formats
- Organization llines, tiles, slices, strips),
- Byte order, alignment (empty bytes)
- Compression
- Meta dała:
- application specific: patient records, camera parameters, ...
- Tags (file formats support user-defined fields)

File Formats - Examples

- TIFF
- Tag Image File Format
- Comprehensive and flexible (lots of options, user-defined)
- Difficult to implement completely
- Fallen out of favor (LZW compression issues)
- GIF
- WWW favorite
- Not particularly flexible (getting more complex, powerful)
- Compression + psuedo color
- Newer features - sequences, movies, transparency
- PGM
- Portable gray map. Not flexible. Gray levels. No compression
- Others: FITS, PNG, etc.
- Typically
- Specification or library used to support formats in applications

Arithmetic Operations on Images

- Arithmetic operations on pixel values
- Multiple images with the same domain
- Image become arguments
- Implied that the operation is applied pointwise across the domain
- Addition, subtraction, multiply, divide, boolean

$$
\begin{aligned}
h=f+g \Rightarrow & h(i, j)=f(i, j)+g(i, j) \\
& \forall(i, j) \in \mathcal{D}
\end{aligned}
$$

Array vs. Matrix Operations

$$
\begin{array}{ll}
\underbrace{\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)}_{A} \times \underbrace{\left(\begin{array}{ll}
x & y \\
w & z
\end{array}\right)}_{X}=\left(\begin{array}{cc}
a x+b w \\
c x+d w & a y+b z \\
c x+d z
\end{array}\right) & \begin{array}{l}
\text { Matrix multiply } \\
\text { (MATLAB A*X) }
\end{array} \\
\underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}_{A} \times \underbrace{\left(\begin{array}{ll}
x & y \\
w & z
\end{array}\right)}_{X}=\left(\begin{array}{cc}
a x & b y \\
c w & d z
\end{array}\right) & \text { Array multiply } \\
\text { (MATLABA.:X) }
\end{array}
$$

Images can be represented as matrices, but the operations refer to array operations unless otherwise specified

Arithmetic operations: $f+g$

Averaging (adding) multiple images can reduce noise

abc
de f
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Results of averaging $5,10,20,50$, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Arithmetic operations: $f-\mathrm{g}$

Arithmetic operations: fxg

FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and black corresponds to 0). (c) Product of (a) and (b).

Arithmetic operations: f / g

Captured image

Illumination

Corrected image

Operations on Cartesian Image Grids

- Grid resolution
- Neighborhoods
- Adjacency and connectivity
- Paths
- Connected components
- Flood fill

Image Coordinates and Resolution

- A single point on an inage grid is a "pixel"
- Sometimes this is just the location, sometimes also the value
- References to pixels
- Single index (implied ordering)"i" or "f(i)"
- Multiple index (gives position on logical grid) "i,j"" or "f(i,j)"
- Physical coordinates
- Logical coordinates place the pixel in physical space
- r-resolution (e.g. mm's) $\quad\left(x_{i j}, y_{i j}\right)=\left(r_{x} i+o_{x}, r_{y} j+o_{y}\right)$
- 0 - origin

Resolution vs size vs dimension

Different physical realizations of the same logical grid

Index Sets

- An index set is a collection of pixel locations
- Used to specify subsets of an image
- All boolean set operations apply
- Convention
- Represent the set as an image with
0 indicating non membership and >0
- Represent the set as an image with
0 indicating non membership and >0 indicating membership

- Logical operations become arithmetic operations

Neighborhood

- Neighborhood (N): a set of relative indices that satisfy the symmetry condition
- Symmetry:

$$
(i, j) \in \mathcal{N} \Leftrightarrow(-i,-j) \in \mathcal{N}
$$

- Applying neighborhoods:

$$
\mathcal{N}(i, j)=\{(k, l) \mid(k-i, l-j) \in \mathcal{N}\}
$$

- I.e. you translate neighborhoods to different locations
- Notice: $(p, q) \in \mathcal{N}(i, j) \Leftrightarrow(i, j) \in \mathcal{N}(p, q)$

Adjacency

- Impose topological structure on the grid
- Local relationships between pixels
- Help to establish distances, paths, connectedness, etc.
- Typically adjacency is local and symmetric
- For 20 images we consider:

4 connected
8 connected

Denote
$I \sim J$

Paths

- Path: Ordered set of indices such that consecutive indices are adjacent

$$
\begin{gathered}
\mathcal{P}=\left(I_{1}, I_{2}, \ldots I_{n}\right) \text { such that } \mathrm{I}_{\mathrm{i}} \sim \mathrm{I}_{\mathrm{i}+1} \\
\forall \mathrm{i}=1, \ldots \mathrm{n}-1
\end{gathered}
$$

- Noncylic path - unique indices
- Closed path - noncyclic and first and last adjacent

Distances in Images

- Grid distance vs physical distance
- Physical distance between pixels I and J

$$
D(I, J)=\sqrt{\left(x_{I}-x_{J}\right)^{2}+\left(y_{I}-y_{J}\right)^{2}}
$$

- Grid distance: options
- Grid Euclidean $\quad D((i, k),(j, l))=\sqrt{(i-j)^{2}+(k-l)^{2}}$
- Manhattan (city block) $D((i, k),(j, l))=|i-j|+|k-l|$
- Shortest path
- Assign cost to each transition between adjacent pixels
- Find path with shortest cost

Connected Component

- Consider image with a binary property
- I.e. test on each index $B(I)$ returns either true or false
- Correct path: path for which every pixel satisfies $B(1)$
- Connected component (C) : set of pixels such that for every pair of pixels in C there exists a correct path between them

Connected Component

- How many distinct CC's are there?

A Simple Algorithm: Flood Fill

- Highlight regions in an image
- "Testli, j)" - is value at pixel (i,j) between a and b
- Inputs: seed, image, test function
- Data structures: input array, output array, list of grid points to be processed

A Simple Algorithm: Flood Fill

- Empty list, clear output buffer ($=0$)
- Start at seed (i,j) and if Test(i,j), put (i,j) on list and mark out[i,j]=1
- Repeat until list of points is empty:
- Remove point (i,j) from list
- (Loop) for all 4 neighbors (i', ${ }^{\prime}$) of (i,j)
- If (Test(i, $\left.{ }^{\prime}{ }^{\prime}\right)$ and out[i,j]) put ($\left.i^{\prime}, j^{\prime}\right)$ on list and mark out[i', $\left.{ }^{\prime}\right]=1$
- Properties
- Guaranteed to stop
- Worst case run time

Connected Component Analysis

- Input: image and test
- Output: an integer image (label map) that has either "0" (failed test) or a positive integer associated with each distinct connected component

CC - Purpose

- When objects are distinguishable by a simple test le.g. intensity threshold)
- Delineate distinct objects for subsequent processing
- E.g Count the number, sizes, etc.
- Statistics, find outliers irregular objects

