Greyscales, Histograms, and Probabilities

Ross Whitaker
SCI Institute, School of Computing
University of Utah

Intensity Transformation Example

-We can drop the (x, y) and represent this kind of filter as an intensity transformation $s=T(r)$. In this case $s=\log (r)$
-s: output intensity
$-r$: input intensity

Intensity transformation

Gamma correction

Gamma-corrected image

Original image as viewed on monitor

Gamma-corrected image as viewed on the same monitor

$s=c r^{\gamma}$

Gamma transformations

a b
c d

FIGURE 3.9

(a) Aerial image.
(b) - (d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and $\gamma=3.0,4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Gamma transformations

c d
FIGURE 3.8
(a) Magnetic resonance
image (MRI) of a fractured human spine.
(b)-(d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and $\gamma=0.6,0.4$, and 0.3 , respectively. (Original image courtesy of Dr. David R. Pickens Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

More Intensity Transformations

7

Piecewise linear intensity transformation

- More control
- But also more parameters for user to specify
- Graphical user
interface can be useful

8

Sample Spaces

- $S=$ Set of possible outcomes of a random event
- Toy examples
- Dice
- Urn
- Cards
- Probabilities

$$
\begin{aligned}
& P(S)=1 \quad A \in S \Rightarrow P(A) \geq 0 \\
& P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \text { where } \mathrm{A}_{\mathrm{i}} \cap \mathrm{~A}_{\mathrm{j}}=\emptyset \\
& \cup_{i=1}^{n} A_{i}=S \Rightarrow \sum_{i=1}^{n} P\left(A_{i}\right)=1
\end{aligned}
$$

Conditional Probabilities

- Multiple events
- SxS Cartesian product - sets
- 2 throws of Dice - $(2,4)$
- 2 picks from an urn - (black, black)
- $P(B \mid A)$ - probability of B in second experiment given outcome (A) of first experiment
- This quantifies the effect of the first experiment on the second
- $P(A, B)$ - probability of A in first experiment and B in second experiment
- $P(A, B)=P(A) P(B \mid A)$

Independence

- $P(B \mid A)=P(B)$
- The outcome of one experiment does not affect the other
- Independence: $P(A, B)=P(A) P(B)$
- Dice
- Each roll is unaffected by the previous (or history)
- Urn
- Independence: replace stone after each experiment
- Cards
- Replace card after it is picked

Random Variable (RV)

- Variable (number) associated with the outcome of a random experiment
- Dice
- E.g. Assign 1-6 to the faces of die
- Urn
- Assign 0 to black and 1 to white (or vice versa)
- Cards
- Lots of different schemes - depends on application
- A function of a random variable is also a random variable

Cumulative Distribution Function (cdf)

- $F(x)$, where x is a RV
- $F(-$ infty $)=0, F($ infty $)=1$
- $F(x)$ non decreasing

$$
F(x)=\sum_{i=-\infty}^{x} P(i)
$$

Continuous Random Variables

- Example: spin a wheel and associate value with angle
- $F(x)$ - cdf continuous
- -> x is a continuous RV

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} f(q) d q \\
f(x)=\left.\frac{d F(q)}{d q}\right|_{x}=F^{\prime}(x)
\end{gathered}
$$

Probability Density Functions

- $f(x)$ is called a probability density function (pdf)

$$
\int_{-\infty}^{\infty} f(x)=1 \quad f(x) \geq 0 \forall x
$$

- A probability density is not the same as a probabilitv

$$
P(a \leq x \leq b)=\int_{a}^{b} f(q) d q=F(b)-F(a)
$$

- To get meaningful numbers you must specify a range

15

Expected Value of a RV

$$
\begin{aligned}
& E[x]=\sum_{i=-\infty}^{\infty} i p(i) \\
& E[x]=\int_{-\infty}^{\infty} q f(q) d q
\end{aligned}
$$

- Expectation is linear
$-\mathrm{E}[\mathrm{ax}]=\mathrm{aE}[\mathrm{x}]$ for a scalar (not random)
$-E[x+y]=E[x]+E[y]$
- Other properties
$-\mathrm{E}[\mathrm{z}]=\mathrm{z}$ ——if z is a constant

Mean of a PDF

- $\operatorname{Mean}=\mathrm{E}[\mathrm{x}]$
- also called " μ "
- Variance $=E[(x-\mu) 2]$
- $\quad=E[x 2]-E[2 \mu x]+E[\mu 2]$
$=E[x 2]-\mu 2$
- also called " $\sigma 2$ "
- Standard deviation is o
- For a distribution having zero mean: $\mathrm{E}[\mathrm{x} 2]=\sigma 2$

Sample Mean

- Run N experiments (independent)
- Draw N sample points from a single pdf
- Sum them up and divide by N
- Resulting M is called the sample mean
- M is a random variable

$$
\begin{aligned}
& M=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& E[M]=E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[x_{i}\right]=m
\end{aligned}
$$

Sample Mean

- How close can we expect to be with a sample mean to the true mean?
- Consider variance of sample mean (M)
- Define a new random variable: $\mathrm{D}=(\mathrm{M}-\mathrm{m}) 2 \quad$ Independence $-\mathrm{r}[\mathrm{E} x \mathrm{y}]=\mathrm{E}[x] E[y]$

$$
\begin{aligned}
& D=\frac{1}{N^{2}} \sum_{i} x_{i} \sum_{j} x_{j}-\frac{1}{N} 2 m \sum_{i} x_{i}+m^{2} \\
& e[D]=\frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]-\frac{1}{N} 2 m E\left[\sum_{i} x_{i}\right]+m^{2} \\
& =\quad \frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]-m^{2} \\
& \frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]=\frac{1}{N^{2}} \sum_{i} E\left[x_{i}^{2}\right]+\frac{1}{N^{2}} \sum_{i} \sum_{j} E\left[x_{i} x_{j}\right]=\frac{1}{N} \sum_{i} E\left[x^{2}\right]+\frac{N(N-1)}{N^{2}} m^{2} \\
& E[D]=\frac{1}{N} E\left[x^{2}\right]+\frac{N(N-1)}{N^{2}} m^{2}-\frac{N^{2}}{N^{2}} m^{2}=\frac{1}{N}\left(E\left[x^{2}\right]-m^{2}\right)=\frac{1}{N} \sigma^{2} \\
& \text { diagonal } \\
& +\frac{N(N-1)}{N^{2}} m^{2} \\
& E[D]=\frac{1}{N} E\left[x^{2}\right]+\frac{N(N-1)}{N^{2}} m^{2}-\frac{N^{2}}{N^{2}} m^{2}=\frac{1}{N}\left(E\left[x^{2}\right]-m^{2}\right)=\frac{1}{N} \sigma^{2}
\end{aligned}
$$

As number of samples - - infty, sample mean \rightarrow true mean

Application: Denoising Images

- Imagine N images of the same scene with random, independent, zero-mean noise added to each one
- Nuclear medicine-radioactive events are random
- Noise in sensors/electronics
- At pixel $(x, y): g(x, y)=s(x, y)+n(x, y)$

True pixel value

- Independent from one image to the next
- Variance $=\sigma$

Application: Denoising Images

- Take multiple images of the same scene
- gi = s + ni
- Mean [ni] = 0; Variance [ni] = $\sigma 2$
- Mean [gi] $=\mathrm{s}$; Variance [gi] $=\sigma 2$
- Sample mean $=M=(1 / \mathrm{N}) \Sigma \mathrm{gi}=\mathrm{s}+(1 / \mathrm{N}) \Sigma \mathrm{ni}$
- Mean $[M]=s$; Variance $[M]=(1 / N) \sigma 2$
- Application:
- Digital cameras with large gain (high ISO, light sensitivity)
- Astronomy imagery

Averaging Noisy Images Can Improve Quality

a b c
d e f
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Results of averaging $5,10,20,50$, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Histograms

- $h(r k)=n k$
- Histogram: number of times intensity level rk appears in the image
- $p(r k)=n k / N M$
- normalized histogram
- also a probability of occurence

Histogram of Image Intensities

- Create bins of intensities and count number of pixels at each level
- Normalized (divide by total \# pixels)

Histogram Equalization

- Automatic process of enhancing the contrast of any given image

Histogram Equalization

26

Tuning Down Hist. Eq.

- Transformation is weighted combination of CDF and identity with parameter alpha

$$
\alpha=0.0
$$

$$
\alpha=0.2
$$

$$
\begin{gathered}
t(s)=(1-\alpha) s+\alpha A(s) \\
\alpha=0.4
\end{gathered}
$$

$\alpha=0.6$
$\alpha=0.8$
$\alpha=1.0$
27

Adaptive Histogram Equalization (AHE)

AHE Gone Bad...

29

Effect of Window Size

Orig

10×10

25×25

50×50

AHE Application: Microscopy Imaging
 AHE

31

AHE Application: Microscopy Imaging

Threshold

CC Analysis/Morphology

CC Analysis/Watersheds32

What is image segmentation?

- Image segmentation is the process of subdividing an image into its constituent regions or objects.
- Example segmentation with two regions:

Input image
intensities 0-255

Segmentation output
0 (background)
1 (foreground)

Thresholding

$$
g(x, y)=\left\{\begin{array}{lll}
1 & \text { if } & f(x, y)>T \\
0 & \text { if } & f(x, y) \leq T
\end{array}\right.
$$

- How can we choose T?

Histograms and Noise

- What happens to the histogram if we add noise?
$-g(x, y)=f(x, y)+n(x, y)$
Threshold data
and assign to classes

35

Choosing a threshold

Role of noise

Univ of Utah,

Low signal-to-noise ratio

Univ of Utah,
38 ncacan

Effect of noise on image histogram

Images

Histograms

39

Effect of illumination on image histogram

Images

Histograms

Some Extra Things

- Gaussian/normal distribution
- Weighted means

Gaussian Distribution

- "Normal" or "bell curve"
- Two parameters
- μ = mean, $\sigma=$ standard deviation

Gaussian Properties

- Best fitting Gaussian to some data is gotten by mean and standard deviation of the samples
- Occurrence
- Central limit theorem: mean of lots of independent \& identically-distributed RVs
- Nature (approximate)
- Measurement error, physical characteristic, physical phenomenon
- Diffusion of heat or chemicals

Weighted Mean from Samples

- Suppose
- We want to compute the sample mean of a "class" of things (or we want to reduce it's influence)
- We are not sure if the ith item belongs to this class or not "partially belongs"
- probability w_{i}, random variable r_{i}

Sample mean (no weights)
$E[r]=\frac{1}{N} \sum_{i=1}^{N} r_{i} \quad E[r]=\frac{1}{\sum_{i=1}^{N} w_{i}} \sum_{i=1}^{N} w_{i} r_{i}$

Weighted sample mean

Gaussian Mixture Modeling of Image Histograms

- K classes, N samples

Problem Statement

- Goal: assign pixels to classes based on intensities (output = label image)
- Problem: can we simultaneously learn the class structure and assign the class labels?

Crisp vs. Soft Class Assignment

- If we knew the pdfs (Gaussians) of the classes, we could assign class labels to each data point/ pixel
- Assume equal overall probabilities of classes

Crisp Assign
$C_{i}=\operatorname{argmax}_{j} P_{j}\left(r_{i}\right)$
Soft Assign
$w_{i}^{j}=P\left(C_{i}=j \mid r_{i}\right)=\frac{1}{\sum_{l=1}^{K} P_{l}\left(r_{i}\right)} P_{j}\left(r_{i}\right)$

Find class that has max probability for given intensity rat pixel I. Assign that class label to that pixel

For each pixel and each class,
assign a (conditional)
probability that that pizet belongs to that class

Simultaneously Estimate Class PDFs and Pixel Labels - Iterative Algorithm

- Start with initial estimate of class models

$$
\mu_{j}^{0}, \sigma_{j}^{0} \text { for } j=1 \ldots K
$$

- Compute matrix of soft assignments

$$
w_{i}^{j}=\frac{1}{\sum_{l=1}^{K} P_{l}\left(r_{i}\right)} P_{j}\left(r_{i}\right)
$$

- Use soft assignments to compute new weighted mean anc $\mu_{j}^{1}, \sigma_{j}^{1}$ standard deviation for each class
- Use new mean and standard deviation to compute new soft assignments and repeat (until change in parameters is very small)

EM Algorithm - Example

Univ of Utah,
49
neARAn

MRI Brain Example

50

