Filtering in the Fourier Domain

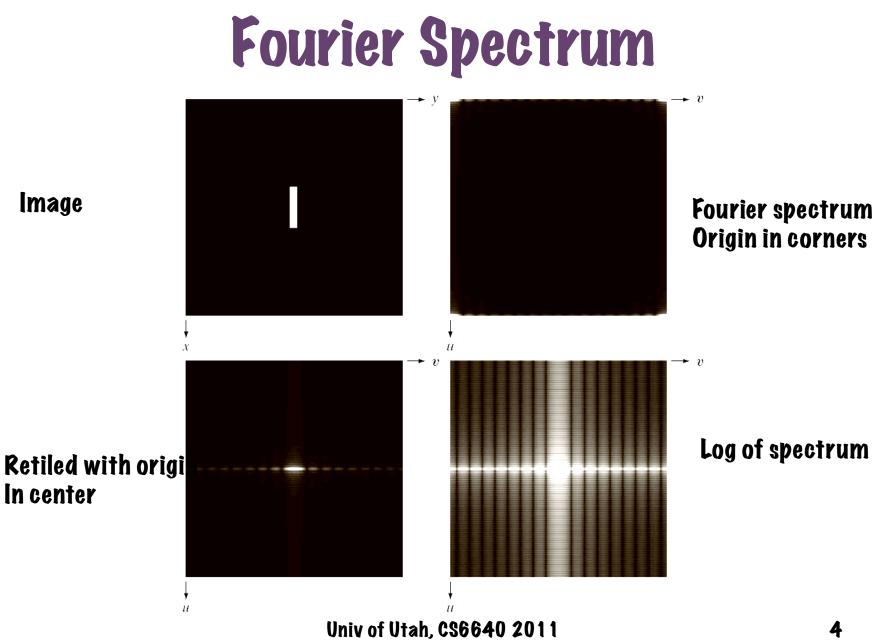
Ross Whitaker SCI Institute, School of Computing University of Utah

Fourier Filtering

- Low-pass filtering
- High-pass filtering
- Band-pass filtering
- Sampling and aliasing
- Tomography
- Optimal filtering and match filters

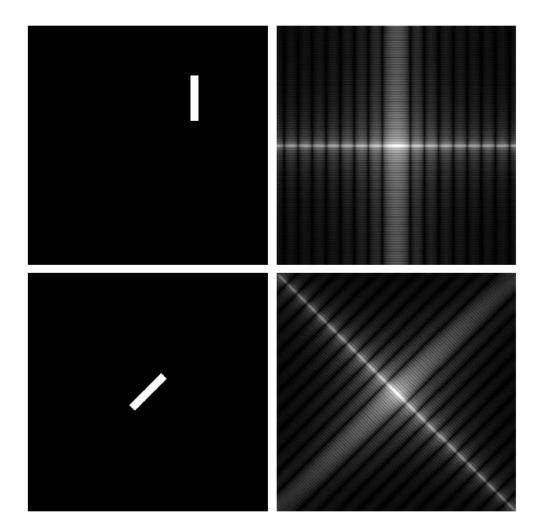
Some Identities to Remember

Discrete unit impulse	$\delta(x, y) \Leftrightarrow 1$
Rectangle	$\operatorname{rect}[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$
Sine	$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
	$j\frac{1}{2}\Big[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\Big]$
Cosine	$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
	$\frac{1}{2} \Big[\delta(\boldsymbol{u} + \boldsymbol{M} \boldsymbol{u}_0, \boldsymbol{v} + \boldsymbol{N} \boldsymbol{v}_0) + \delta(\boldsymbol{u} - \boldsymbol{M} \boldsymbol{u}_0, \boldsymbol{v} - \boldsymbol{N} \boldsymbol{v}_0) \Big]$
Gaussian	$A2\pi\sigma^2 e^{-2\pi^2\sigma^2(t^2+z^2)} \Leftrightarrow Ae^{-(\mu^2+\nu^2)/2\sigma^2} \ (A \text{ is a constant})$



Image

Fourier Spectrum-Rotation



Phase vs Spectrum

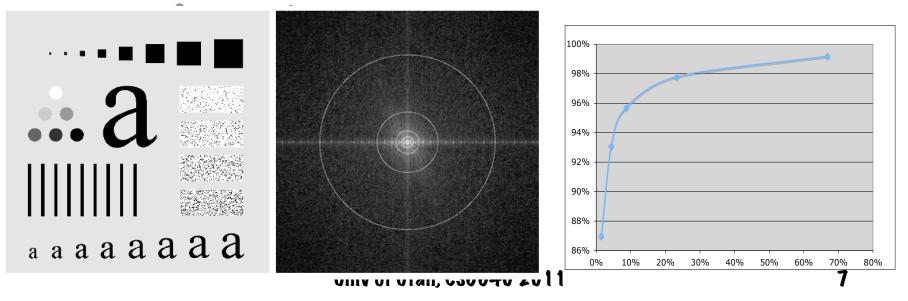
Image

Reconstruction from phase map

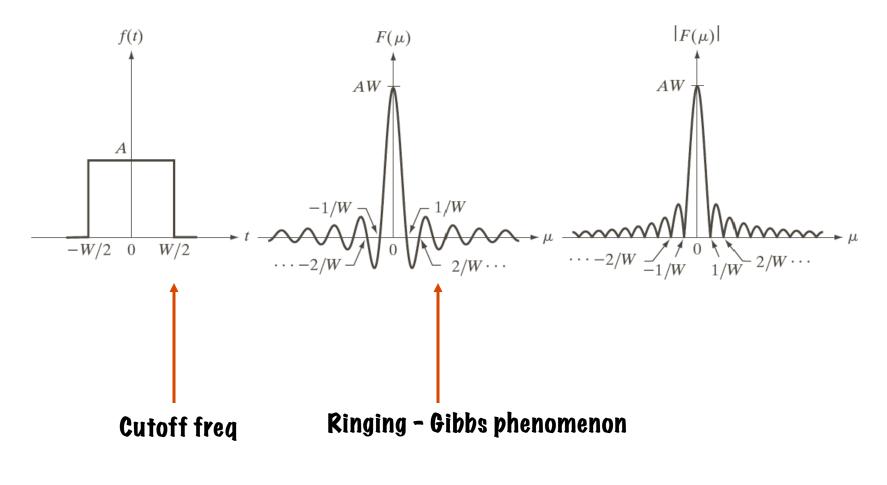
Reconstruction from <u>spectrum</u>

Low-Pass Filter

- Reduce/eliminate high frequencies
- Applications
 - Noise reduction
 - uncorrelated noise is <u>broad band</u>
 - Images have sprectrum that focus on low



Ideal LP Filter - Box, Rect

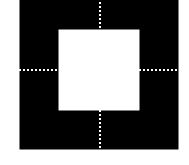


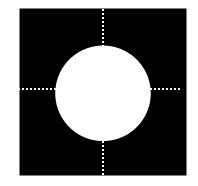
Extending Filters to 2D (or higher)

- Two options
 - Separable
 - H(s) -> H(u)H(v)
 - Easy, analysis

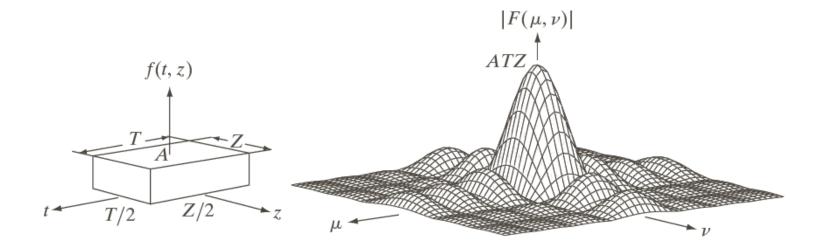
- Rotate

- H(s) -> H((u² + v²)^{1/2})
- Rotationally invariant





Ideal LP Filter - Box, Rect



Ideal Low-Pass Rectangle With Cutoff of 2/3

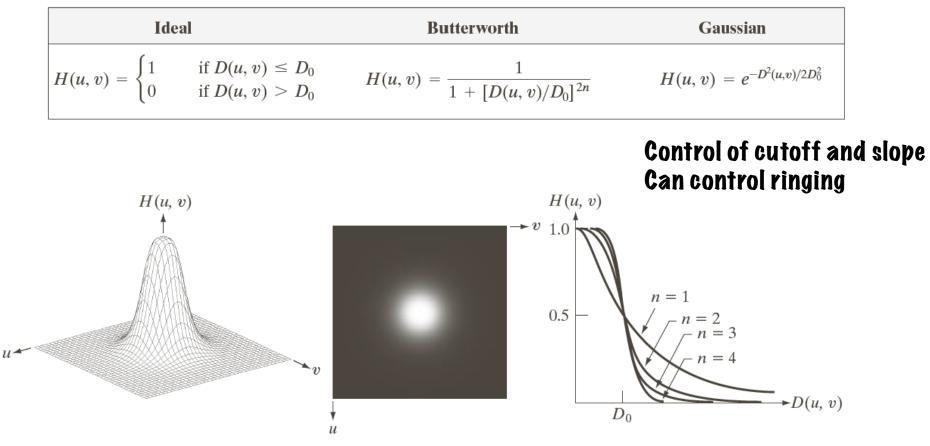


Ideal LP - 1/3

Ideal LP - 2/3

Butterworth Filter

Lowpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.



Butterworth - 1/3

Butterworth vs Ideal LP

Butterworth - 2/3

Gaussian LP Filtering BLPF GLPF

2

F1

F2

High Pass Filtering

- $\cdot HP = 1 LP$
 - All the same filters as HP apply
- Applications
 - Visualization of high-freq data (accentuate)
- High boost filtering
 - -HB = (1 a) + a(1 LP) = 1 a + LP

High-Pass Filters

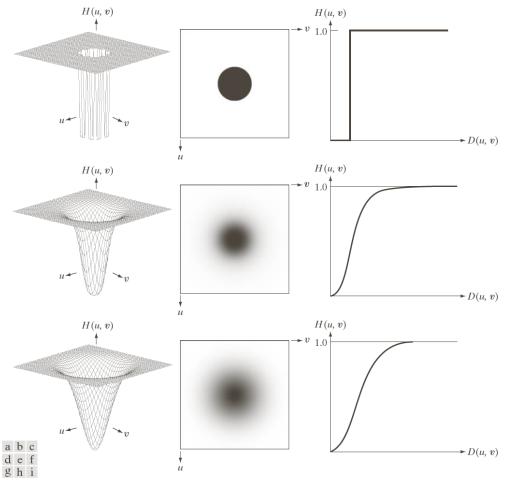
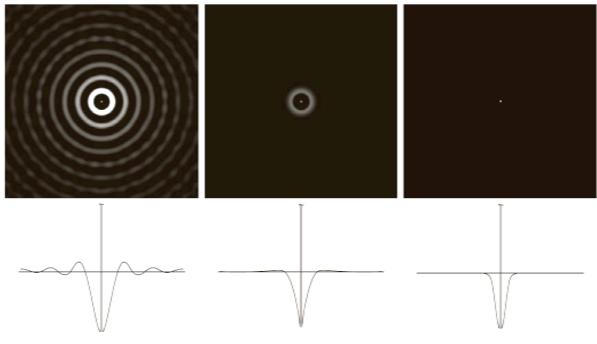


FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

High-Pass Filters in Spatial Domain



a b c

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

High-Pass Filtering with IHPF

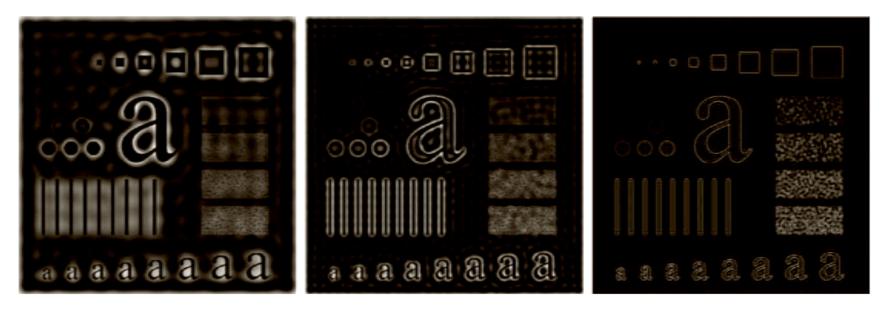
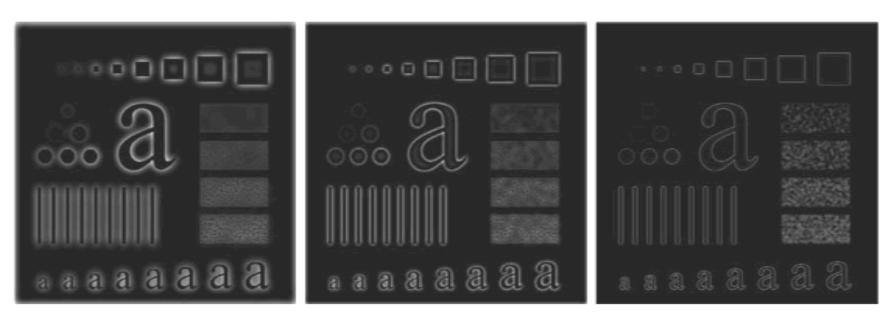
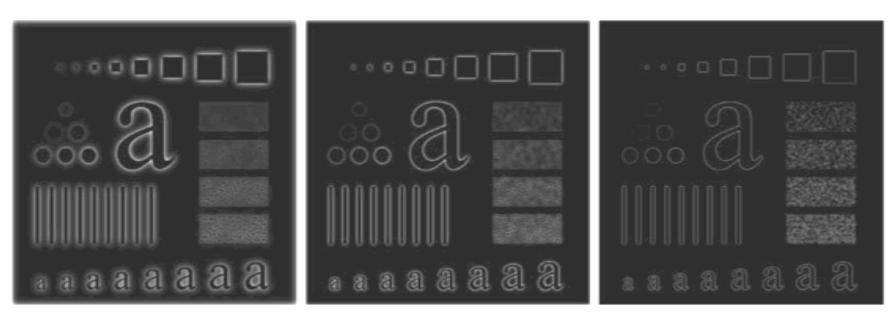


FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with $D_0 = 30, 60, and 160$.



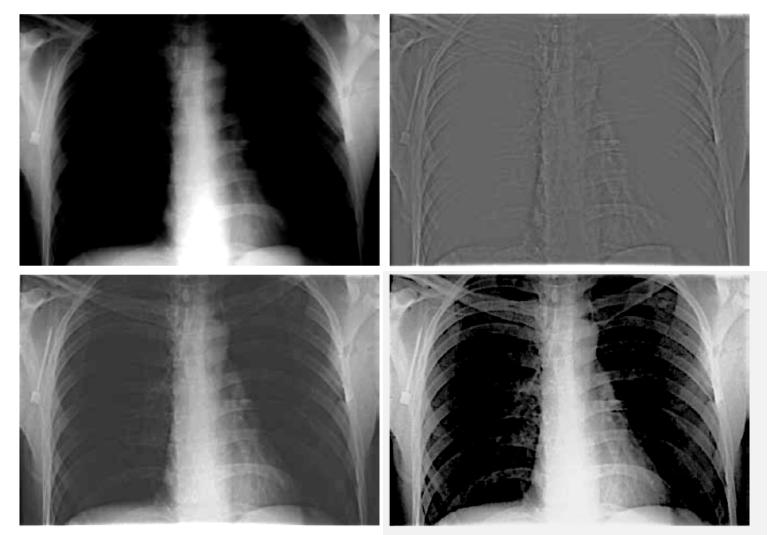
аbс

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained with an IHPF.



аbс

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.



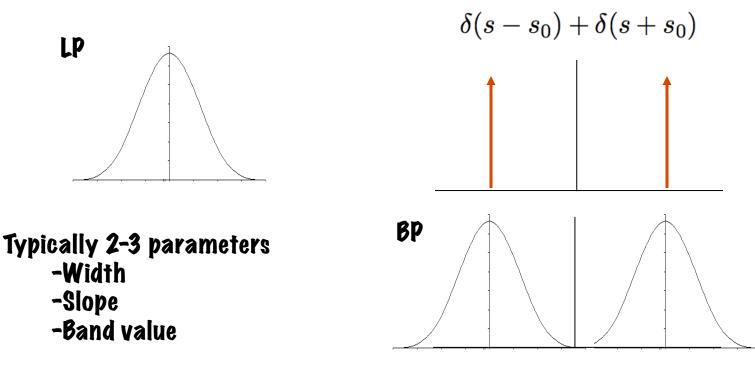
Univ of Utah, CS6640 2011

High Boost with GLPF

High-Boost Filtering

Band-Pass Filters

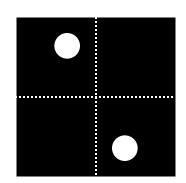
 Shift LP filter in Fourier domain by convolution with delta



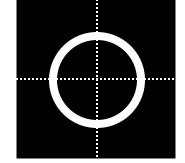
Univ of Utan, couveru zu i i

Band Pass - Two Dimensions

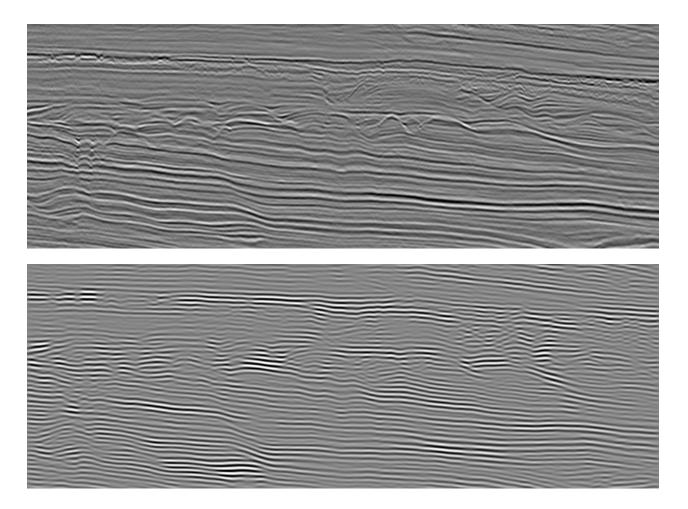
- Two strategies
 - Rotate
 - Radially symmetric
 - Translate in 2D
 - Oriented filters



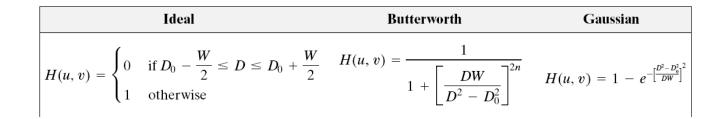
- Note:
 - Convolution with delta-pair in FD is multiplication with cosine in spatial domain

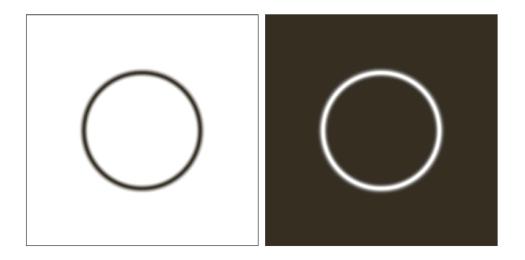


Band Bass Filtering

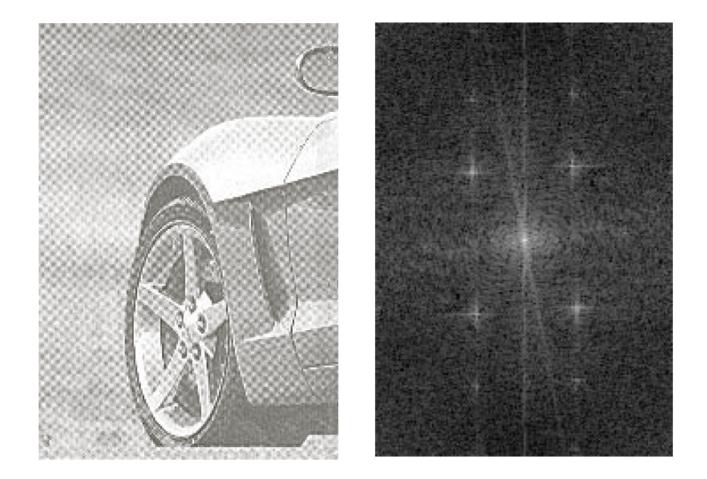


Radial Band Pass/Reject

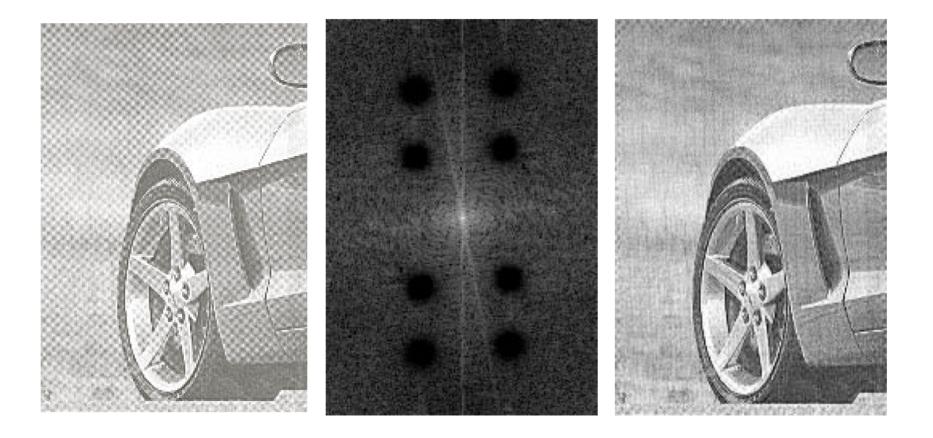




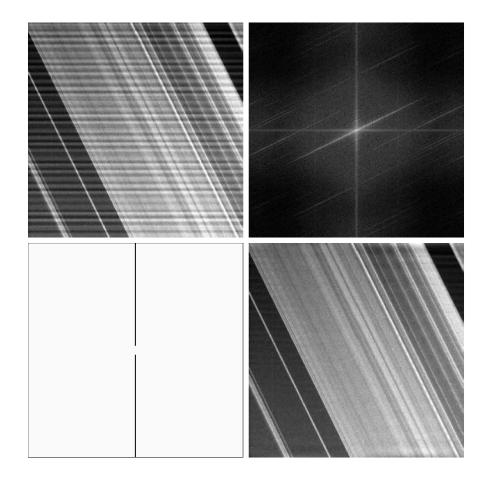
Band Reject Filtering



Band Reject Filtering



Band Reject Filtering

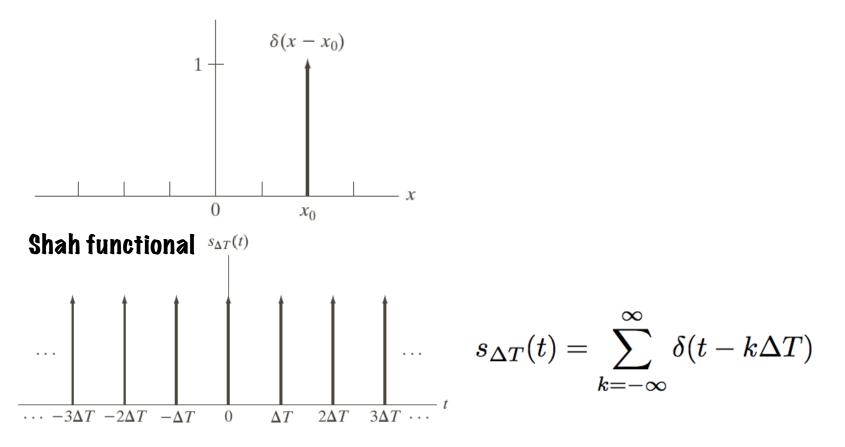


Discrete Sampling and Aliasing

- Digital signals and images are discrete representations of the real world
 - Which is continuous
- What happens to signals/images when we sample them?
 - Can we quantify the effects?
 - Can we understand the artifacts and can we limit them?
 - Can we reconstruct the original image from the discrete data?

A Mathematical Model of Discrete Samples

Delta functional



A Mathematical Model of Discrete Samples

- Goal
 - To be able to do a continuous Fourier transform on a signal before and after sampling

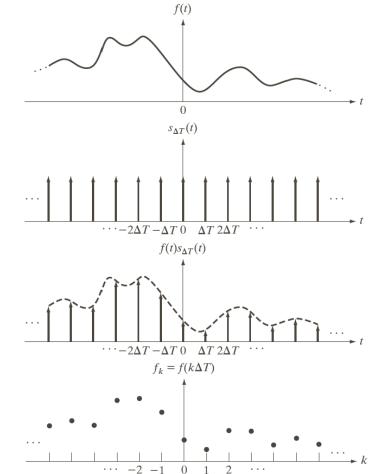
Discrete signal

$$f_k$$
 $k=0,\pm 1,\ldots$

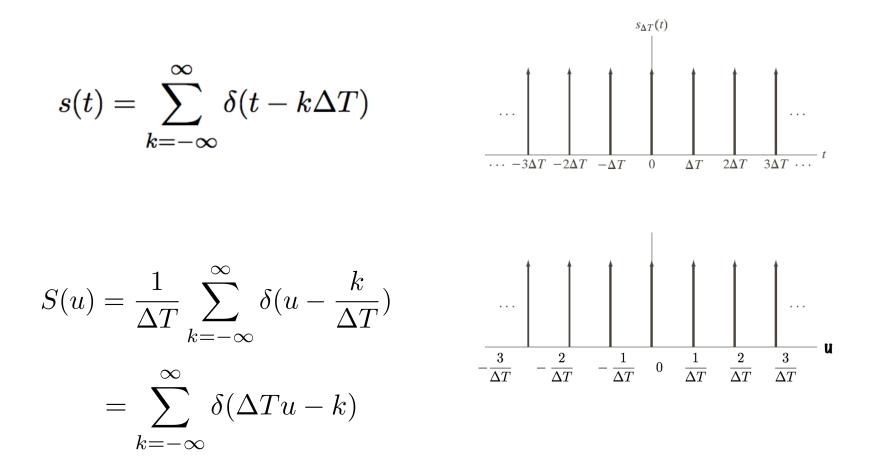
Samples from continuous function

$$f_k = f(k\Delta T)$$

Representation as a function of t • Multiplication of f(t) with Shah $\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{k=-\infty}^{\infty} f_k \delta(t - k\Delta T)$

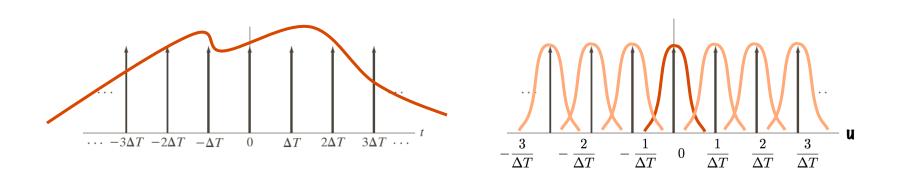


Fourier Series of A Shah Functional

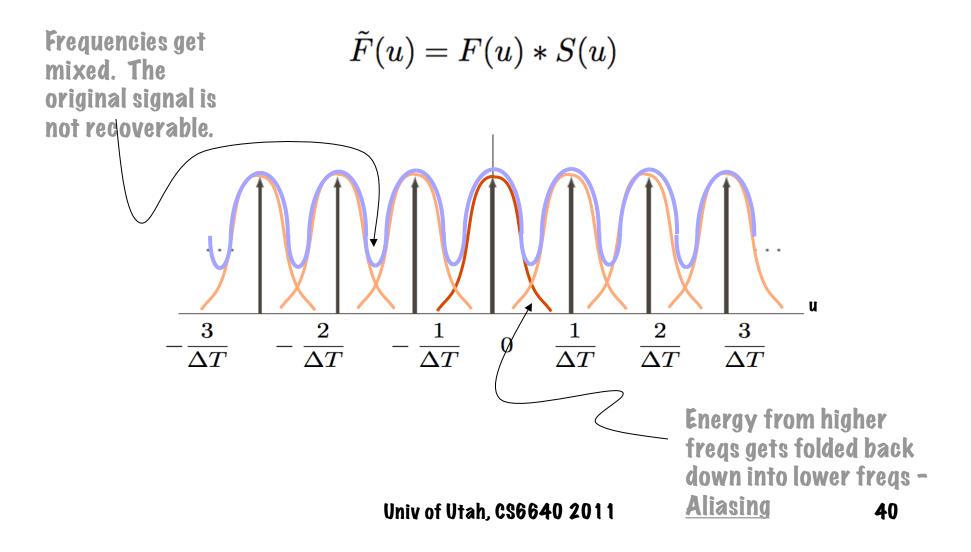


Fourier Transform of A Discrete Sampling

 $\tilde{f}(t) = f(t)s(t) \quad \longleftarrow \quad \tilde{F}(u) = F(u) * S(u)$

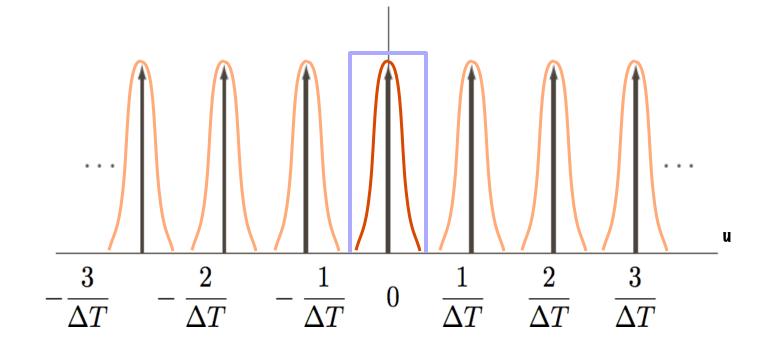


Fourier Transform of A Discrete Sampling



What if F(u) is Narrower in the Fourier Domain?

- No aliasing!
- How could we recover the original signal?



What Comes Out of This Model

- Sampling criterion for complete recovery
- An understanding of the effects of sampling
 - Aliasing and how to avoid it
- Reconstruction of signals from discrete samples

Shannon Sampling Theorem

- Assuming a signal that is band limited: $f(t) \longleftarrow F(u) \qquad |F(u)| = 0 \ \forall \ |u| > B$
- Given set of samples from that signal $f_k = f(k\Delta T)$ $\Delta T \leq \frac{1}{2B}$
- Samples can be used to generate the original signal
 - Samples and continuous signal are equivalent

Sampling Theorem

- Quantifies the amount of information in a signal
 - Discrete signal contains limited frequencies
 - Band-limited signals contain no more information then their discrete equivalents
- Reconstruction by cutting away the repeated signals in the Fourier domain
 - Convolution with sinc function in space/time

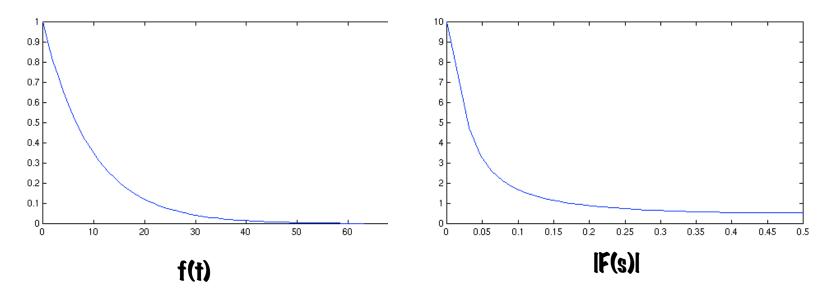
Reconstruction

Convolution with sinc function

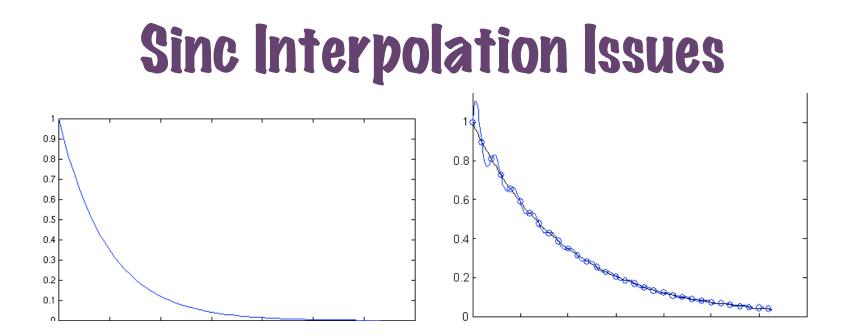
 $f(t) = \tilde{f}(t) * \mathbf{I} \mathbf{F}^{-1} \left[\operatorname{rect} \left(\Delta \mathrm{Tu} \right) \right]$ $= \left(\sum_{k} f_k \delta(t - k\Delta T)\right) * \operatorname{sinc}\left(\frac{\mathrm{t}}{\Delta \mathrm{T}}\right) = \sum_{k} f_k \operatorname{sinc}\left(\frac{\mathrm{t} - \mathrm{k}\Delta \mathrm{T}}{\Delta \mathrm{T}}\right)$ -1-0 5 3

Sinc Interpolation Issues

- Must functions are not band limited
- Forcing functions to be band-limited can cause artifacts (ringing)



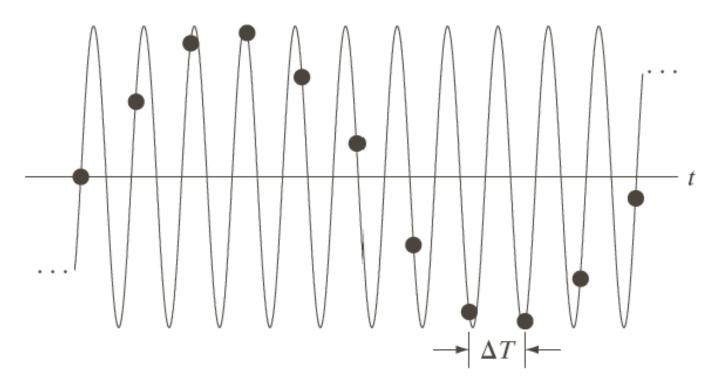
Univ of Utah, CS6640 2011



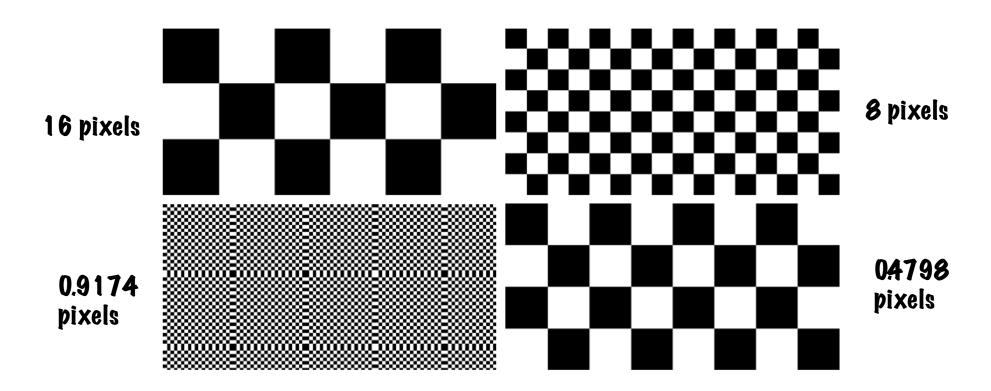
Ringing - Gibbs phenomenon Other issues: Sinc is infinite - must be truncated

Aliasing

 High frequencies appear as low frequencies when undersampled

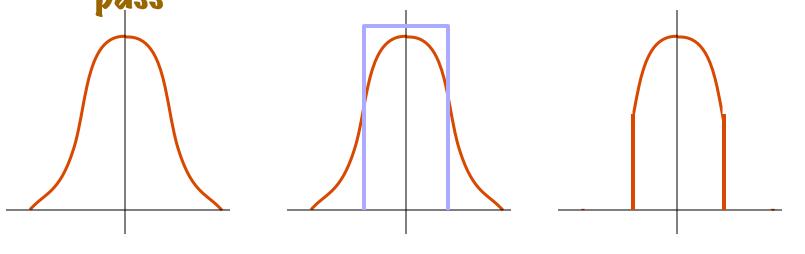


Aliasing



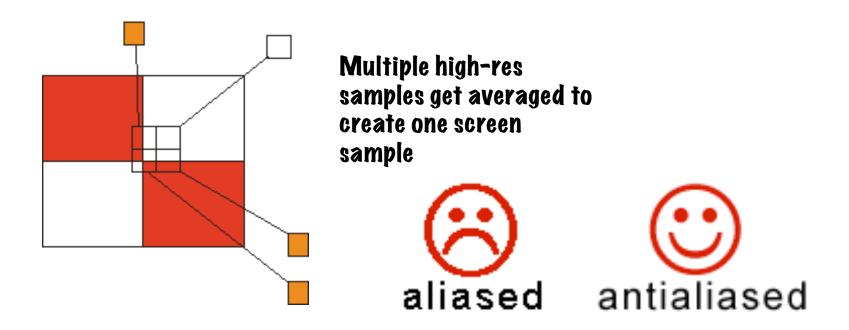
Overcoming Aliasing

- Filter data prior to sampling
 - Ideally band limit the data (conv with sinc function)
 - In practice limit effects with fuzzy/soft low pass



Antialiasing in Graphics

 Screen resolution produces aliasing on underlying geometry



Antialiasing

Interpolation as Convolution

 Any discrete set of samples can be considered as a functional

$$\tilde{f}(t) = \sum_{k} f_k \delta(t - k\Delta T)$$

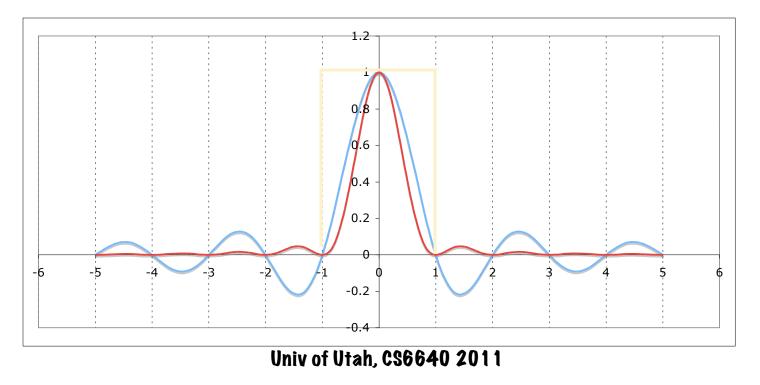
- Any linear interpolant can be considered as a convolution
 - Nearest neighbor rect(t)

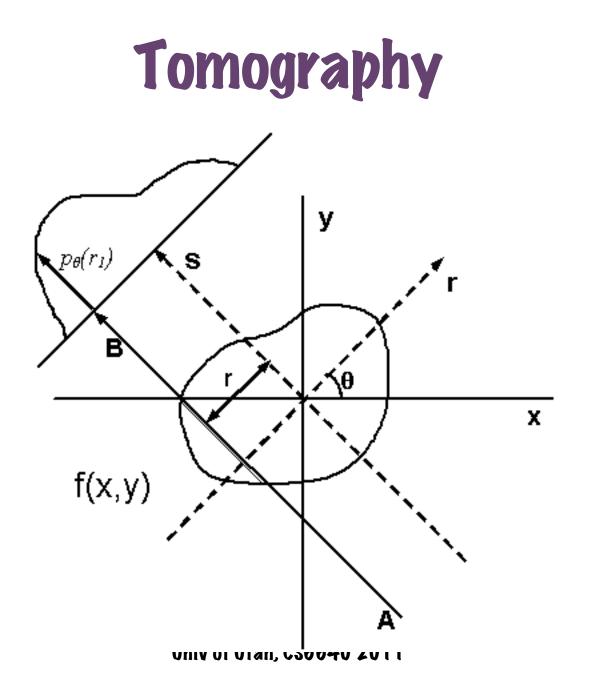
- Linear - tri(t)

$$\operatorname{tri}(t) = \begin{cases} t+1 & -1 \le t \le 0\\ 1-t & 0 \le t \le t\\ 0 & \text{otherwise} \end{cases}$$

Convolution-Based Interpolation

- Can be studied in terms of Fourier Domain
- Issues
 - Pass energy (=1) in band
 - Low energy out of band
 - Reduce hard cut off (Gibbs, ringing)





Tomography Formulation

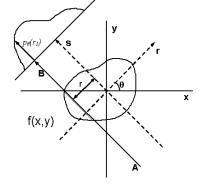
Attenuation
$$I = I_0 \exp\left(-\int \mu(x, y) \, ds\right)$$

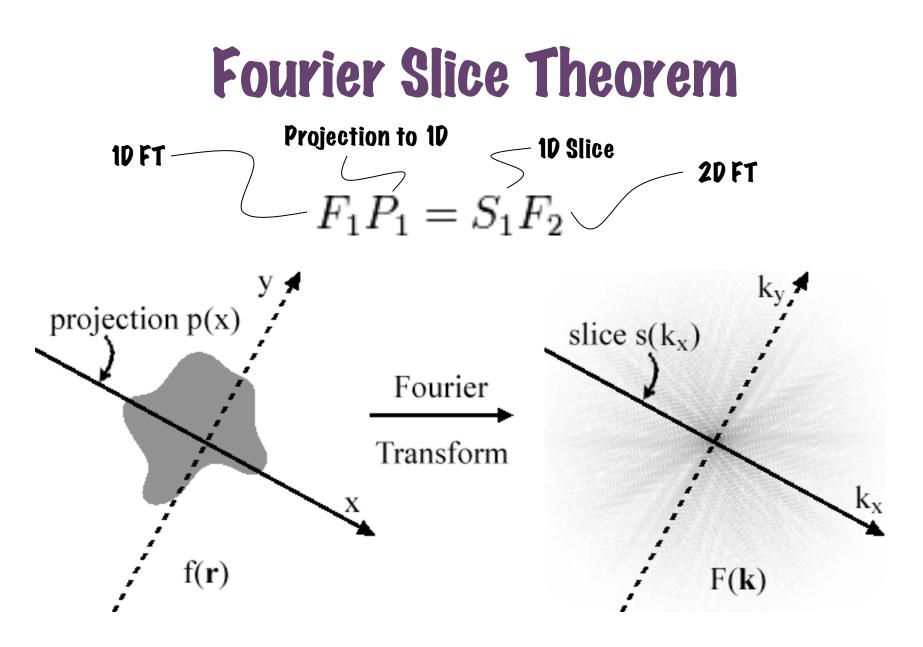
Log gives line integral $p(r, heta) = \ln(I/I_0) = -\int \mu(x,y)\,ds$

Line with angle theta $x \cos \theta + y \sin \theta = r$

Volume integral

$$p(r,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta(x\cos\theta + y\sin\theta - r)\,dx\,dy$$





Optimal Filtering

Systems model

$$y(t) = h(t) * x(t) + v(t)$$

- Ergodic signals
 - Drawn from a ensemble
 - Average over ensemble is constant
 - Average over time is ensemble average
 - -> Expected value of power spectrum describes ensemble Univ of Utah, CS6640 2011

Optimal/Weiner Filter

- Power spectrum of signal, noise are known
- H(u) is known
- Filter that minimizes the expected squared error of reconstruction is:

$$G(u) = \frac{H^*(u)S(u)}{|H(u)|^2 S(u) + N(u)}$$

Optimal/Weiner Filter

$$G(u) = \frac{1}{H(u)} \frac{|H(u)|^2}{|H(u)|^2 + \frac{N(u)}{S(u)}}$$
$$G(u) = \frac{1}{H(u)} \frac{|H(u)|^2}{|H(u)|^2 + \frac{1}{SNR(u)}}$$

Image Registration

- Find dx and dy that best matches two images
- Cross correlation can give the best translation between two images
- Algorithms
 - SD -> FD (mult) -> SD look for peak
 - SD -> FD -> find the best fit for a phase shift
- Issues
 - Boundaries, overlap, intensity variations, high intensity edges

Normalized Cross Correlation

- Subtract the mean of the image and divide by the S.D.
 - This maps the image to the unit sphere
 - A single integral is the dot product of these to vectors
 - angles between the two normalized images
 - Helps alleviate intensity differences

Phase Correlation

$$\begin{aligned} \mathbf{G}_{a} &= \mathcal{F}\{g_{a}\}, \ \mathbf{G}_{b} = \mathcal{F}\{g_{b}\} \\ R &= \frac{\mathbf{G}_{a}\mathbf{G}_{b}^{*}}{|\mathbf{G}_{a}\mathbf{G}_{b}^{*}|} \\ r &= \mathcal{F}^{-1}\{R\} \\ (\Delta x, \Delta y) &= \arg\max_{(x,y)}\{r\} \end{aligned}$$

$$g_b(x,y) \stackrel{\text{def}}{=} g_a((x - \Delta x) \mod M, (y - \Delta y) \mod N)$$

$$\mathbf{G}_b(u,v) = \mathbf{G}_a(u,v)e^{-2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}$$

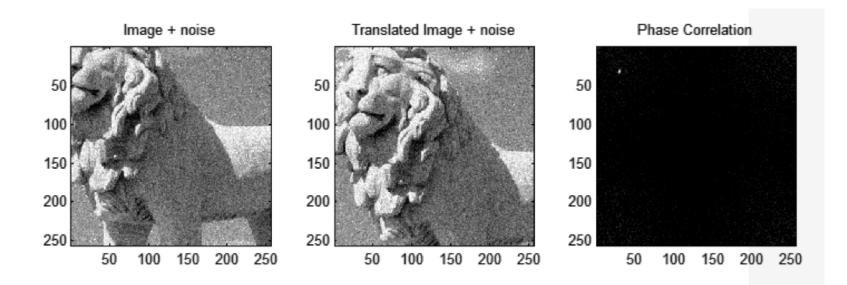
$$R(u,v) = \frac{\mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}$$

$$= \frac{\mathbf{G}_a \mathbf{G}_a^* e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}}{|\mathbf{G}_a \mathbf{G}_a^* e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}|}$$

$$= \frac{\mathbf{G}_a \mathbf{G}_a^* e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}}{|\mathbf{G}_a \mathbf{G}_a^*|}$$

$$= e^{2\pi i(\frac{u\Delta x}{M} + \frac{v\Delta y}{N})}$$

Phase Correlation



For Midterm - Pseudocode

- High level code to describe algorithm
- Make up reasonable key words
- Key idea convey the algorithm
- Can adopt syntax from any major programming language
 - Be consistent

Psuedocode

Input: READ, OBTAIN, GET Output: PRINT, DISPLAY, SHOW Compute: COMPUTE, CALCULATE, DETERMINE Initialize: SET, INIT Add one: INCREMENT, BUMP

IF HoursWorked > NormalMax THEN

Display overtime message

ELSE

Display regular time message

ENDIF

WHILE employee.type NOT EQUAL manager AND personCount < numEmployees

INCREMENT personCount CALL employeeList.getPerson with personCount RETURNING employee

ENDWHILE

Psuedocode

```
SET Carry to 0
FOR each DigitPosition in Number from least significant to most significant
COMPUTE Total as sum of FirstNum[DigitPosition] and SecondNum[DigitPosition] and Carry
IF Total > 10 THEN
SET Carry to 1
SUBTRACT 10 from Total
ELSE
SET Carry to 0
END IF
STORE Total in Result[DigitPosition]
END LOOP
IF Carry = 1 THEN
RAISE Overflow exception
END IF
```