Feature Detection

Features

- Places where intensities vary is some prescribed way in a small neighborhood
- How to quantify this variability
 - Derivatives directional derivatives, magnitudes
 - Scale and smoothing
 - Statistics

• Variance of some property (Gaussian weights on edgeness = $E{f^2} - E{f}^2 = \int G(x, y)f^2(x, y) - \left[\int G(x, y)f(x, y)\right]^2$

Differential vs Stastical Variation

- Derivatives measure monotonicity and direction
- Variance captures more general types of variation

Other Types of Features

- Lines (contrast, width, orientation)
- · Corners (contrast, angle, orientation)

- Places of "sharp" change in brightness
- How to quantify this...
- In 10 model
 - Gauss conv w/step
 - f(x) = g(x) * g(x)
 - Derivative of step is delta

$$\begin{array}{lll} f(x) &=& \operatorname{erf}_{\sigma}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} \mathbf{G}_{\sigma}(\mathbf{a}) \mathrm{d}\mathbf{a} \\ f'(x) &=& G_{\sigma}(x) \\ f''(x) &=& \frac{x}{\sigma^2} G_{\sigma}(x) \end{array}$$

- High derivatives with Non-maximal supression
 - Local max of f'(x)
 - | f'(x) | > T ; f"(x) = 0 ; f"'(x) <> 0
 - f"'(x) condition not usually needed
- Zero-crossing algorithm
 - Can do sub-grid accuracy
 - For pixels like to have "thin" result
- Computing derivatives
 - Derivative of Gaussian kernels
 - Parameter tuning
 - Sigma, T

Generalizing To Multiple Dimensions

- Marr-Hildreth
 - Gradient threshold
 - Zero crossings in the Laplacian of f(x)
 - $f_{xx}(x) + f_{yy}(x) = 0$; $f_x(x)^2 + f_y(x)^2 > T^2$
- Canny Edges (1980s)
 - Do nonmaximal suppression along the direction of the gradient

$$\begin{array}{l} \nabla f &= \left(\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right) = \left(\begin{array}{c} f_x \\ f_y \end{array} \right) \\ |\nabla f(x)| &> T \\ H_f &= \left(\begin{array}{c} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{array} \right) \\ (\nabla f)^T H_f \nabla f &= 0 \\ (\nabla f)^T H_f \nabla f &= f_x^2 f_{xx} + 2f_x f_y f_{xy} + f_y^2 f_{yy} \end{array} \\ \textbf{Preprocessing - denoising} \\ \textbf{Derivatives - computed with kernels} \\ \textbf{Zero crossings - & \textbf{B-connected thin lines}} \\ \textbf{Hysterises thresholding (on gradient)} \\ \textbf{All pixels that satisfy zero-crossing and gradient} \\ T_{h1} \ are edges \\ \textbf{All accept all pixels that in the T_{h1} connected components using T_{lo} \\ \textbf{Lower gradient edges can be brought in if they are connected to high-gradient edges \end{array}$$

Connectivity In Discrete Domains

- Neighborhood relationship
 - 4 or 8 neighbors in 2D
 - More complex in 3D
 - Symmetric

- K-connected path between two pixels
 - Sequence of (unique) pixels that begins on (a) and ends at (b) and for which each consequetive pair in the sequence is kconnected

Connected Component

- · A subset S of pixels in an image such that
 - For any pair of pixels C(a),(b)J E S, there exists a k-connected path between (a) and (b).
- Usefulness: find connected components S in an image that satisfy some conditions
 - Pixel conditions P(a)
 - Threshold or some other grey-level test
 - Region conditions R(S)
 - · Aggregate quantities such as size, length, etc.
- Algorithm: flood fill

Flood Fill

- Highlight regions in an image
- "Test(i, j)" is value at pixel (i,j) between a and b
- Inputs: seed, values a&b
- Data structures: input array, output array, list of grid points to be processed

A Simple Algorithm: Flood Fill

- Empty list, clear output buffer (=0)
- Start at seed (i,j) and if Test(i,j), put (i,j) on list and mark out[i,j]=1
- Repeat until list of points is empty:
 - Remove point (i_j) from list
 - (Loop) for all 4 neighbors (i',j') of (i,j)
 - If (Test(i',j') and out[i,j]) put (i',j') on list and mark out[i',j']=1
- Properties
 - Guaranteed to stop
 - Worst case run time

Corners

- Places where gradient directions vary (at some scale)
 - + high gradient (edge) possibly

• How to capture this...

Level Sets of an Image

Level set - set of points f(x, y)=k

- "isophote", "isocontour", "isosurface"(3D)

Gauge Coordinates

 Local coordinate system aligned with image gradient

Corners - differential approach

 High derivative of normal in direction perpendicular to gradient

$$\vec{n} = \frac{\nabla f}{|\nabla f|} \quad \vec{n}$$

• This is level-set/isophote curvature- κ $|\nabla f|\kappa = |\nabla f|\nabla \cdot \frac{\nabla f}{|\nabla f|}$

Corners - differential approach

Non-maximal supression

Has a "sign" convex/concave

 $\frac{d\kappa}{dv} = 0 + \text{Canny edge}$ • Or local max o $|\nabla f| |\kappa|$

- Compare to neighbors

Differential Detector Example

Finding Local Point Maxima

- Zero crossings of x and y derivatives
- Pixel greater than its neighbors (4 or 8 connected)
- Threshold and find center of mass of connected component

VISPack Code

Neighborhood Statistics Harris (88) or Plessey Detector

• Covariance of image gradient in $M = \int G(x,y) \begin{pmatrix} f_x f_x & f_x f_y \\ f_x f_y & f_y f_y \end{pmatrix} dxdy$

 $C = \det(\mathbf{M}) - \mathbf{k} \operatorname{Tr}(\mathbf{M})^2 = \alpha \beta - \mathbf{k} (\alpha + \beta)^2$

SUSAN Corner Detector "Smallest Univalue Segment Assimilating Nucleus"

- Smith and Brady 1995
- Threshold pixels in nieghborhood (likeness to center) and compute ratio of areas

SUSAN Detector

Include local or directional

nonmaximal supression

SUSAN vs Plessey Detector

SUSAN

Detection Performance

- False positives something that wasn't real
- False negatives missing something
- Location accuracy

% False Positives

What do we do with features?

- Edge linking and grouping
- Correspondences
- Shape detection Hough transform

Edge Linking and Grouping

- Many man-made object have flat sides
 - Photographs have edges corresponding to object parts
- Strategies
 - Connected components (bridge gaps)
 - Look for curves that meet criteria
 - Line segments (fit to line)
 - Circular segments

Edge Linking - P. Kovesi

Vehicle Tracking-D. Kohler

Vehicle Models

Align Model Based on Edge Correspondences

Correspondences

- Hard problem
 - Two images containing N pts -> exponential time
 - Also, false positives/negatives
- Anything better than exhaustive search?

Correspondences with Signatures

- Establish signature for each detected point/line
 Invariant
- Try combinations starting with best signature matches
 - Sort correspondences by signature match
- Signatures
 - Local greyscale histogram
 - Spin images (Heckbert) average greyscale as a function of distance
 - Correlation (not invariant)

Correspondences-RANSAC "Random Sample Consensus"

- Outliers a problem
- 1. Choose M correspondences at random
 - Very few, minimum for establishing transformation
- 2. Compute transformation
- **3.** Find out how well these matches predict the other correspondences (threshold on distance)
- 4. Repeat a lot of times
 - Choose small random set which is best predictor
- 5. Establish inliers
- 6. Compute transformation on all inliers

Hough Transform

See book and notes