Feature Detection

Features

- Places where intensities vary is some prescribed way in a small neighborhood
- How to quantify this variability
- Derivatives - direcitonal derivatives, magnitudes
- Scale and smoothing
- Statistics
- Variance of some property (Gaussian weights on edgeness $=\mathrm{E}\left\{\mathrm{f}^{2}\right\}-\mathrm{E}\{\mathrm{f}\}^{2}=\int \mathrm{G}(\mathrm{x}, \mathrm{y}) \mathrm{f}^{2}(\mathrm{x}, \mathrm{y})-\left[\int \mathrm{G}(\mathrm{x}, \mathrm{y}) \mathrm{f}(\mathrm{x}, \mathrm{y})\right]^{2}$

Differential vs Stastical Variation

- Derivatives measure monotonicity and direction
- Variance captures more general types of variation
G-weighting
f MMVN

Other Types of Features

- Lines (contrast, width, orientation)

- Corners (contrast, angle, orientation)
- Ridges/valleys

- Line ends

$$
9
$$

Edges

- Places of "sharp" change in brightness
- How to quantify this...
- In 10 - model
- Gauss conv w/step
- $f(x)=g(x) * s(x)$

- Derivative of step is delta
$f(x)=\operatorname{erf}_{\sigma}(\mathrm{x})=\int_{-\infty}^{\mathrm{x}} \mathrm{G}_{\sigma}(\mathrm{a}) \mathrm{da}$
$f^{\prime}(x)=G_{\sigma}(x)$
$f^{\prime \prime}(x)=\frac{x}{\sigma^{2}} G_{\sigma}(x)$

Edges

- High derivatives with Non-maximal supression
- Local max of $f^{\prime}(x)$
- | $f^{\prime}(x) \mid>T ; f^{\prime \prime}(x)=0 ; f^{\prime \prime \prime}(x) \diamond 0$
- $f^{\prime \prime \prime}(x)$ condition not usually needed
- Zero-crossing algorithm
- Can do sub-grid accuracy
- For pixels - like to have "thin" result
- Computing derivatives
- Derivative of Gaussian kernels
- Parameter ituning
- Sigma, T

Generalizing To Multiple Dimensions

- Marr-Hildreth
- Gradient threshold
- Zero crossings in the Laplacian of $f(x)$
$-f_{x x}(x)+f_{y y}(x)=0 ; f_{x}(x)^{2}+f_{y}(x)^{2}>T^{2}$
- Canny Edges (1980s)
- Do nonmaximal suppression along the direction of the gradient

Canny Edges

$$
\begin{aligned}
\nabla f & =\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\binom{f_{x}}{f_{y}} \\
|\nabla f(x)| & >T \\
H_{f} & =\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial \partial \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right) \\
(\nabla f)^{T} H_{f} \nabla f & =0 \\
(\nabla f)^{T} H_{f} \nabla & =f_{x}^{2} f_{x x}+2 f_{x} f_{y} f_{x y}+f_{y}^{2} f_{y y}
\end{aligned}
$$

- Preprocessing - denoising
- Derivatives - computed with kernels
- Zero crossings - 8-connected thin lines
- Hysterises thresholding (on gradient)
- All pixels that satisfy zero-crossing and gradient $\rightarrow T_{h i}$ are edges
- All accept all pixels that in the $T_{\text {hi }}$ connected components using T_{10}
- Lower gradient edges can be brought in if they are connected to high-gradient edges

Connectivity In Discrete Domains

- Neighborhood relationship
- 4 or 8 neighbors in 20

- K-connected path between two pixels
- Sequence of (unique) pixels that begins on (a) and ends at (b) and for which each consequetive pair in the sequence, is k connected

$$
\log _{0 \rightarrow x^{\prime}}
$$

Connected Component

- A subset $\$$ of pixels in an image such that
- For any pair of pixels $[(a),(b)] E S$, there exists a k-connected path between (a) and (b).
- Usefulness: find connected components \$ in an image that satisfy some conditions
- Pixel conditions $\mathrm{P}(\mathrm{a})$
- Threshold or some other grey-level test
- Region conditions R(S)
- Aggregate quantities such as size, length, etc.
- Algorithm: flood fill

Flood Fill

- Highlight regions in an image
- "Test (\mathbf{i}, j) " - is value at pixel ($\mathbf{i}, \mathrm{j})$ between a and b
- Inputs: seed, values a\&b
- Data structures: input array, output array, list of grid points to be processed

A Simple Algorithm: Flood Fill

- Empty list, clear output buffer (=0)
- Start at seed (i, j) and if Test($i, j)$, put (i, j, j on list and mark out[i,j]=1
- Repeat until list of points is empty:
- Remove point (i, j) from list
- (Loop) for all 4 neighbors (i^{\prime}, j ') of ($\left.i, j, j\right)$

- Properties
- Guaranteed to stop
- Worst case run time

Corners

- Places where gradient directions vary (at some scale)
- + high gradient (edge) possibly

- How to capture this...

Level Sets of an Image

- Level set - set of points $f(x, y)=k$
- "isophote", "isocontour", "isosurface"(3D)

Greyscale
image

Gauge Coordinates

- Local coordinate system aligned with image gradient

Tangent to level-sets
Gradient direciton
-perpendicular to level
set

Corners - differential approach

- High derivative of normal in direction perpendicular to gradient

$$
\begin{gathered}
\text { cornerness }=|\nabla \mathrm{f}| \frac{\mathrm{d} \overrightarrow{\mathrm{n}}}{\mathrm{dv}} \cdot \overrightarrow{\mathrm{n}} \\
\vec{n}=\frac{\nabla f}{|\nabla f|}
\end{gathered}
$$

- This is level-set/isophote curvature-к

$$
|\nabla f| \kappa=|\nabla f| \nabla \cdot \frac{\nabla f}{|\nabla f|}
$$

Corners - differential approach

- Non-maximal supression

$$
\frac{d \kappa}{d v}=0 \quad+\text { Canny edge }
$$

- Or local max $0|\nabla f||\kappa|$
- Compare to neighbors

Differential Detector Example

Finding Local Point Maxima

- Zero crossings of x and y derivatives
- Pixel greater than its neighbors (4 or 8 connected)
- Threshold and find center of mass of connected component

VISPack Code

```
im = im.gaussDiffuse(3.0);
im_dx = im.dx();
im_dy = im.dy();
grad_mag = (im_dx.power(2) + im_dy.power(2)).sqrt();
curve = (im.dx(2)*im_dy.power(2) +
    im.dy(2)*im_dx.power(2) -
    2.0*im_dx.dy()*im_dx*im_dy).abs()
    /(grad_mag.power(2) + (float)1.0e-2);
curve = curve.setBorder(0.0f, 2);
curve = grad_mag*curve.abs();
```


Neighborhood Statistics Harris (88) or Plessey Detector

- Covariance of image gradient in

$$
M=\int G(x, y)\left(\begin{array}{ll}
f_{x} f_{x} & f_{x} f_{y} \\
f_{x} f_{y} & f_{y} f_{y}
\end{array}\right) d x d y
$$

$$
C=\operatorname{det}(\mathrm{M})-\mathrm{k} \operatorname{Tr}(\mathrm{M})^{2}=\alpha \beta-\mathrm{k}(\alpha+\beta)^{2}
$$

SUSAN Corner Detector

 "Smallest Univalue Segment Assimilating Nucleus"- Smith and Brady 1995
- Threshold pixels in nieghborhood llikeness to center) and compute ratio of areas

SUSAN Detector

Include local or directional
nonmaximal supression

SUSAN vs Plessey Detector

SUSAN

Plessey

Detection Performance

- False positives - something that wasn't real
- False negatives - missing something
- Location accuracy

\% False Positives

What do we do with features?

- Edge linking and grouping
- Correspondences
- Shape detection - Hough transform

Edge Linking and Grouping

- Many man-made object have flat sides
- Photographs have edges corresponding to object parts
- Strategies
- Connected components (bridge gaps)
- Look for curves that meet criteria
- Line segments (fit to line)
- Circular segments

Edge Linking - P. Kovesi

Vehicle Tracking-D. Kohler

Vehicle Models

Align Model Based on Edge Correspondences

Correspondences

- Hard problem
- Two images containing N pts -> exponential time
- Also, false positives/negatives
- Anything better than exhaustive search?

Correspondences with Signatures

- Establish signature for each detected point/line
- Invariant
- Try combinations starting with best signature matches
- Sort correspondences by signature match
- Signatures
- Local greyscalle histogram
- Spin images (Heckbert) - average greyscale as a function of distance
- Correlation (not invariant)

Correspondences-RANSAC "Random Sample Consensus"

- Outliers a problem

1. Choose \mathbf{M} correspondences at random

- Very few, minimum for establishing transformation

2. Compute transformation
3. Find out how well these matches predict the other correspondences (threshold on distance)
4. Repeat a lot of times

- Choose small random set which is best predictor

5. Establish inliers
6. Compute transformation on all inliers

Hough Transform

- See book and notes

