Image Compression

CS 6640 School of Computing University of Utah

G&W, 3rd Ed., Ch 8

Compression

- What
 - Reduce the amount of information (bits) needed to represent image
- Why
 - Transmission
 - Storage
 - Preprocessing...

Redundant & Irrelevant Information

- "Your wife Helen will meet you at O'Hare Airport in Chicago at 5 minutes past 6pm tomorrow night"
- Irrelevant or redudant can depend on context
 - Who is receiving the message?

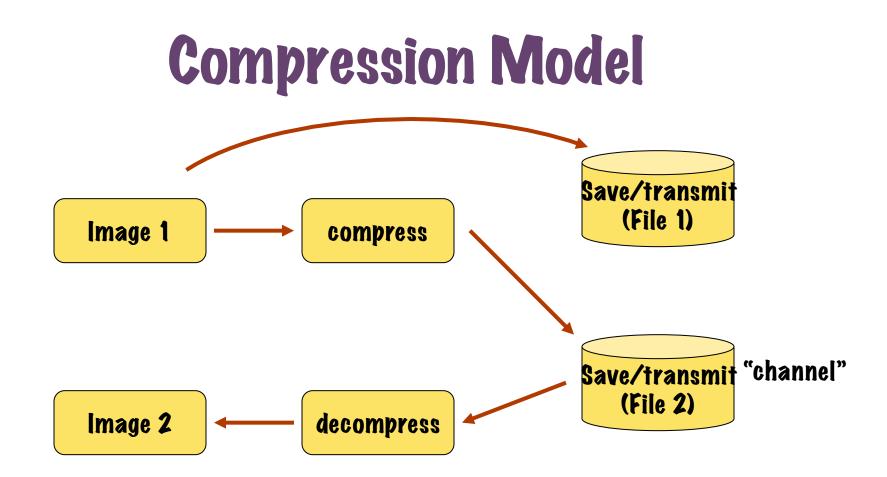
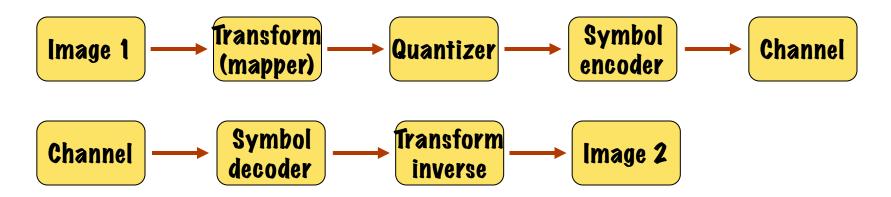


Image1 == Image2 -> "lossless" <- reduces <u>redundant</u> info Image1 != Image2 -> "lossy" <- tries to reduce <u>redundant & irrelevant</u> info Size(File1)/Size(File2) -> "compression ratio"

Redundancy

- Coding redundancy
 - More bits than necessary to create unique codes
- Spatial/geometric redundancy
 - Correlation between pixels
 - Patterns in image
- Psychopysical redundancy (irrelevancy?)
 - Users cannot distinguish
 - Applies to any application (no affect on output)

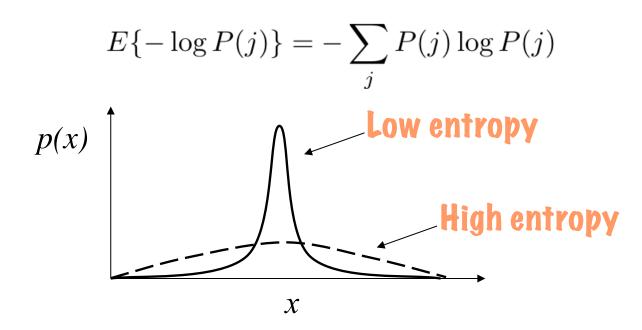
Transform Coding Standard Strategy



- Note: can have special source or channel modules
 - Account for specific properties of image/ application
 - Account for specific properties of channel (e.g. noise)

Fundamentals

Information content of a signal -> entropy



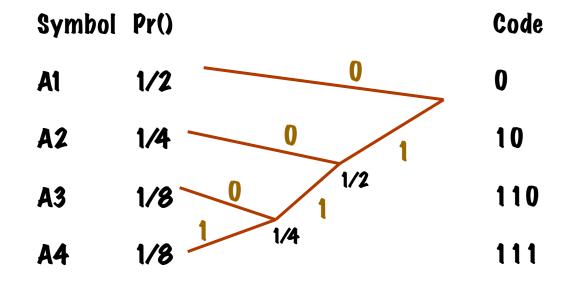
 Lower bound on #bits need to unambiguously represent a sequence of symbols

Strategy (optimal)

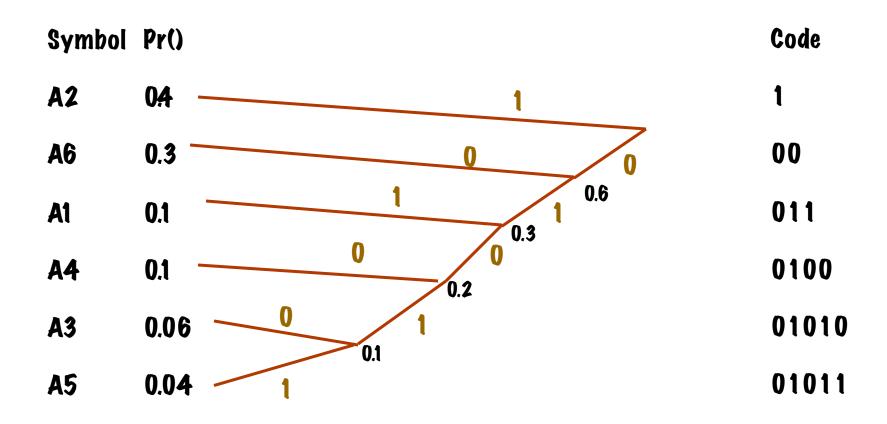
- Variable-Length Codes
- Devote fewer bits to those symbols that are most likely
 - More generally -> sequences of symbols
- Where do the statistics come from?
 - A-priori knowledge
 - The signal itself (send dictionary)
 - Ad hoc schemes

Huffman Coding

- Input: sumbols and probabilities
- Output: variable length symbol table
 - Coded/decoded one at a time
- Tree



Huffman Coding



Fixed Length Codes

- Dictionary with strategy to capture special structure of data
- Example: LZW (Lempel-Ziv-Welch)
 - Start with basic dictionary (e.g. grey levels)
 - As new sequences of symbols are encountered add them to dictionary
 - Hope: encode frequently occuring <u>sequences</u> of symbols
 - Greedy
 - Can decompress w/out table (first occurance not replaced)

LZW Compress

^WED^WE^WEE^WEB^WET

```
w = NIL;
while ( read a character k )
{
    if wk exists in the dictionary
    w = wk;
    else
        add wk to the dictionary;
        output the code for w;
        w = k;
    }
```

w	k	output	index	symbol	
NIL	^				
^	W	^	256	^w	
W	Е	W	257	WE	
E	D	E	258	ED	
D	^	D	259	D^	
^	W				
^W	E	256	260	^WE	
D	^	E	261	E^	
^	W				
^w	E				
^WE	E	260	262	^WEE	
E	^				
E^	W	261	263	E^W	
W	E				
WE	в	257	264	WEB	
B	^	в	265	в^	
^	W				
^w	E				
^WE	т	260	266	^WET	
т	EOF	т			

LZW Decompress

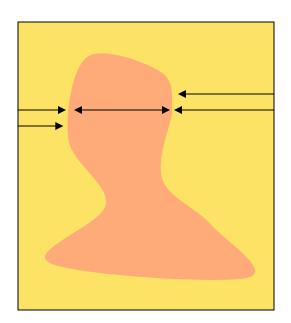
WED<256>E<260><261><257>B<260>T

<pre>read a character k; output k; w = k;</pre>
while (read a character k)
/* k could be a character or a code. */
{
entry = dictionary entry for k;
output entry;
<pre>add w + entry[0] to dictionary;</pre>
w = entry;
}

w	k	output	index	symbol	
	^	^			
^	W	W	256	^w	
W	D	Е	257	WE	
E	D	D	258	ED	
D	<256>	^w	259	D^	
<256>	E	E	260	^WE	
E	<260>	^WE	261	E^	
<260>	<261>	E^	262	^WEE	
<261>	<257>	WE	263	E^W	
<257>	в	в	264	WEB	
в	<260>	^WE	265	в^	
<260>	т	т	266	^WET	

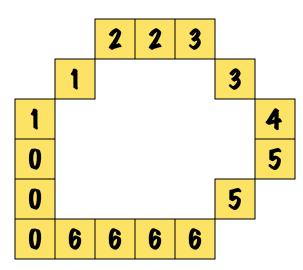
Run Length Enoding (RLE)

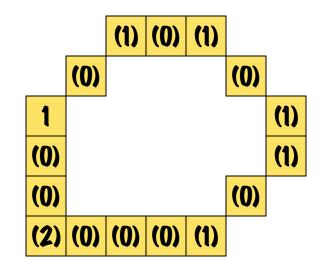
- Good for images with few, discrete color values
- Assumption: images have homogeneous regions
- Strategy
 - Row-major order
 - Encode value of "run" and it's length
 - Can combine with symbol encoder
- Issues
 - How homogeneous is the data?
 - Is there enough continuity in rows?



RLE For 2D

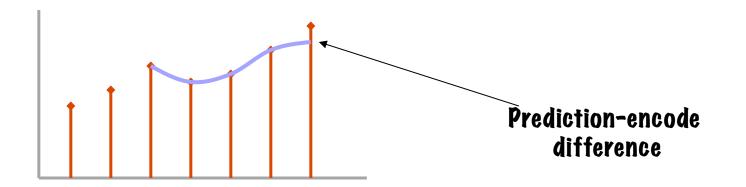
- Complex -> lots of strategies
- Trace contours surrounding regions
- Encode contours using a incremental scheme with a differential strategy (to improve statistics)





Predictive Coding

- Take advantage of correlations
- Have a simple model that predicts data
 - Encode differences from prediction
 - Residual should be lower entropy

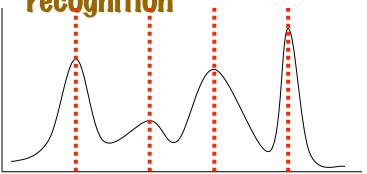


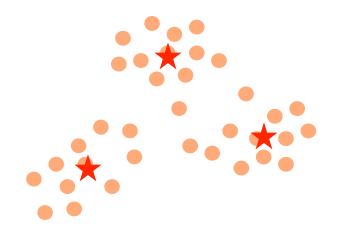
Lossy Compression

- Transforms
 - Move to another representation where "importance" of information is more readily discernable
 - Usually reversible
- Quantization
 - Strategy for reducing the amount of information in the signal
 - Typically not reversible (lossy)

Quantization

- Eliminate symbols that are too small or not important
- Find a small set of approximating symbols (less entropy)
 - Grey level or "vector quantization"
 - Find values that minimize error
 - Related to "clustering" in pattern recognition





Block Transform Coding: JPEG

- International standard (ISO)
- Baseline algorithm with extensions
- Transform: discrete cosine transform (DCT)
 - Encodes freq. Info w/out complex #s

$$F_u = \alpha(u) \sum_{i=0}^{N-1} f_i \cos\left[\frac{(2i+1)u\pi}{2N}\right]$$

$$F_i = \sum_{u=0}^{N-1} \alpha(u) F_u \cos\left[\frac{(2i+1)u\pi}{2N}\right]$$

- FT of larger, mirrored signal
- Does not have other nice prop. of FT $\alpha(u) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & u = 0\\ \sqrt{\frac{2}{N}} & u \neq 0 \end{cases}$$

JPEG Algorithm

- Integer grey-level image broken into 8x8 sub blocks
- Set middle (mean?) grey level to zero (subtract middle)
- DCT of sub blocks (11 bit precision) -> T (u,v)
- Rescale frequency components by Z(u,v) and round

Rescaling

$$\hat{T}(u, v) = \operatorname{round}\left(\frac{\mathrm{T}(u, v)}{\mathrm{Z}(u, v)}\right)$$

 Different scalling matrices possible, but recommended is:

	16	11	10	16	24	40	51	61
Z(u, v) =	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

Reordering

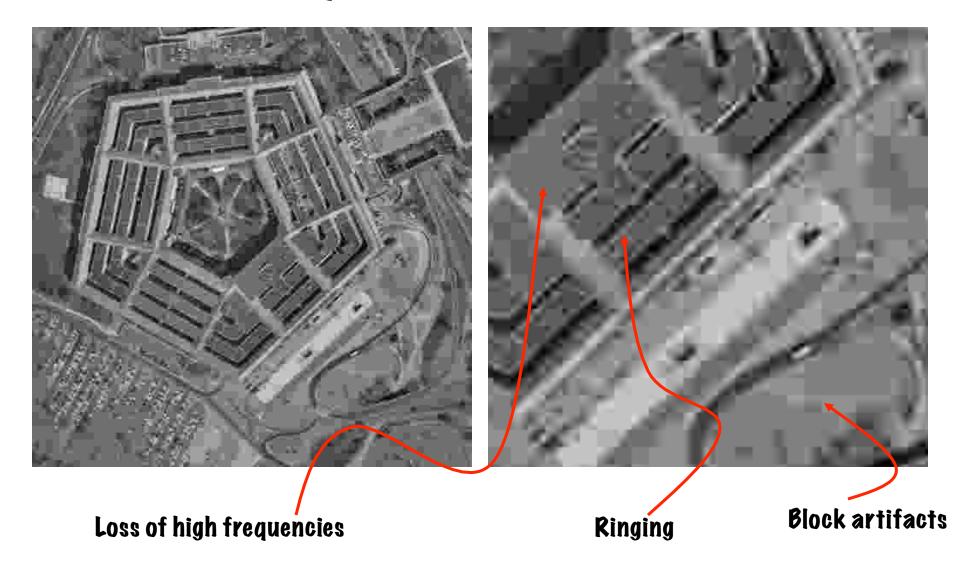
 DCT entries reordered in zig-zag fashion to increase coherency (produce blocks of zeros)

0	1	5	6	14	15	27	28
2	4	7	13	16	26	29	42
3	8	12	17	25	30	41	43
9	11	18	24	31	40	44	53
10	19	23	32	39	45	52	54
20	22	33	38	46	51	55	60
21	34	37	47	50	56	59	61
35	36	48	49	57	58	62	63

Coding

- Each sub-block is coded as a difference from previous sub-block
- Zeros are run-length encoded and nonzero elements are Huffman coded
 - Modified HC to allow for zeros

JPEG Example Compression Ratio ~10:1



Other Transformations

- Sub-band coding
 - Band-pass transformations that partition the Fourier domain into pieces
 - Convolve with those filters and take advantage of sparse structure
 - Hopefully many values near zero (quantization)
- Wavelets
 - Multiscale filters
 - Like subband filters but typically other properties
 - Eg. Orthogonal (inner between diff filters in bank is zero)

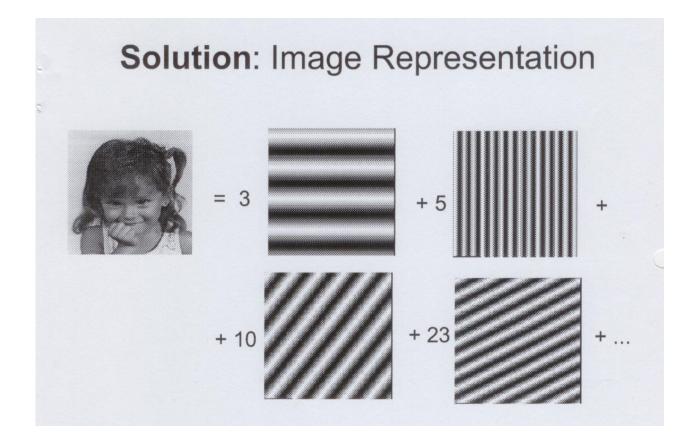
List of topics

- Why transform?
- Why wavelets?
- · Wavelets like basis components.
- Wavelets examples.
- · Fast wavelet transform.
- · Wavelets like filter.
- · Wavelets advantages.

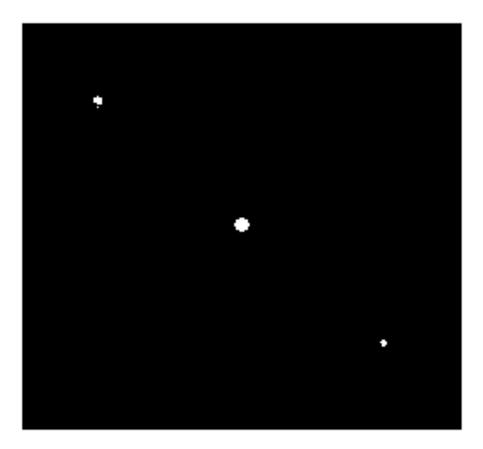
(Wavelet slides from Burd Alex, U. of Haifa)

Why transform?

Image representation

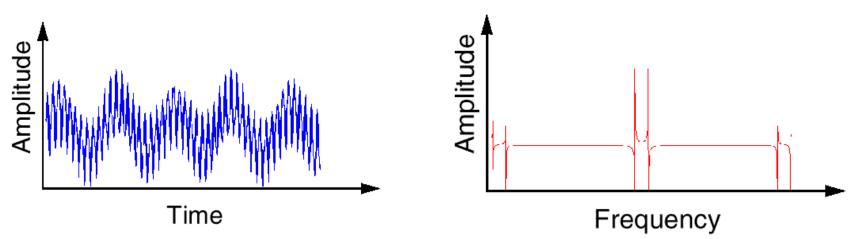


Noise in Fourier spectrum



Fourier Analysis

Breaks down a signal into constituent sinusoids of different frequencies



In other words: Transform the view of the signal from time-base to frequency-base.

What's wrong with Fourier?

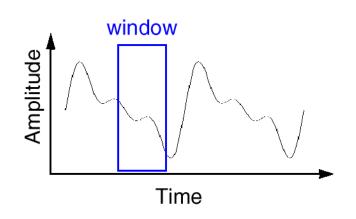
- By using Fourier Transform, we loose the <u>time information</u>: WHEN did a particular event take place?
- FT can not locate drift, trends, abrupt changes, beginning and ends of events, etc.
- Calculating use complex numbers.

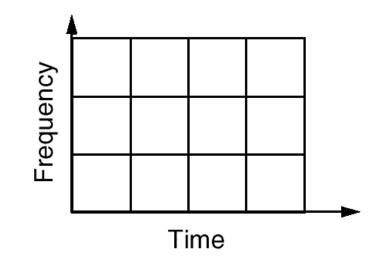
Time and Space definition

- Time for one dimension waves we start point shifting from source to end in time scale.
- Space for image point shifting is two dimensional .
- Here they are synonyms.

Short Time Fourier Analysis

 Analyze a small section of a signal
 Denis Gabor (1946) developed <u>windowing</u>: STFT





STFT (or: Gabor Transform)

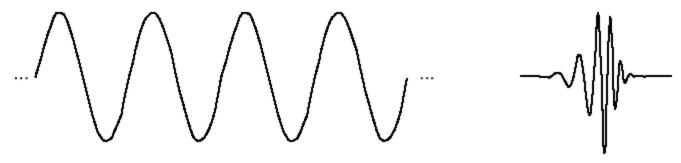
- A compromise between time-based and frequency-based views of a signal.
- both time and frequency are represented in limited precision.
- The precision is determined by the <u>size</u> of the window.
- Once you choose a particular size for the time window - <u>it will be the same for</u> <u>all frequencies</u>.

What's wrong with Gabor?

Many signals require a more flexible approach - so we can vary the window size to determine more accurately <u>either</u> time or frequency.

What is Wavelet Analysis?

And...what is a wavelet...?



Sine Wave

Wavelet (db10)

A wavelet is a waveform of effectively <u>limited duration</u> that has an <u>average value</u> <u>of zero</u>.

Wavelet's properties

- Short time localized waves with zero integral value.
- Possibility of time shifting.
- Flexibility.

The Continuous Wavelet Transform (CWT)

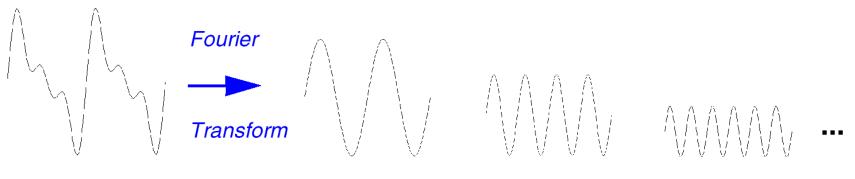
A mathematical representation of the <u>Fourier transform</u>:

$$F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$$

Meaning: the sum over all time of the signal *f(t)* multiplied by a complex exponential, and the result is the Fourier coefficients F(w).

Wavelet Transform

Those coefficients, when multiplied by a sinusoid of appropriate frequency w, yield the constituent sinusoidal component of the original signal:

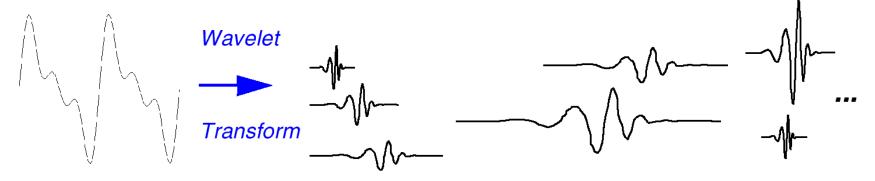


Signal

Constituent sinusoids of different frequencies

Wavelet Transform

- The result of the CWT are Wavelet coefficients.
- Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the constituent wavelet of the original signal:

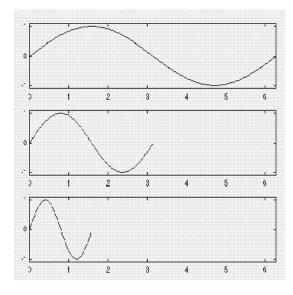


Signal

Constituent wavelets of different scales and positions

Scaling

- Wavelet analysis produces a <u>time-scale</u> view of the signal.
- Scaling means stretching or compressing of the signal.
- Like a scale factor (a) for sine waves:



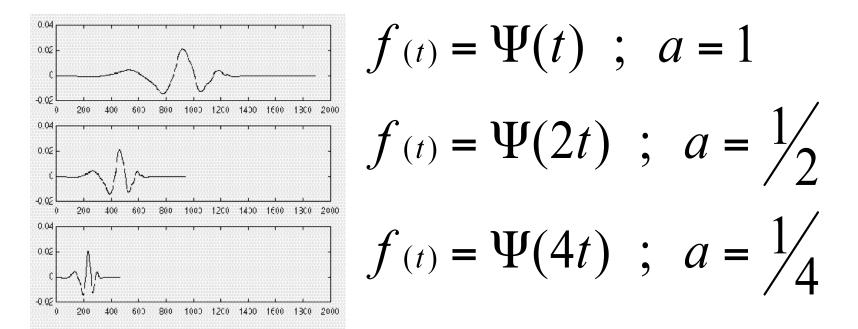
$$f_{(t)} = \sin(t) ; a = 1$$

$$f_{(t)} = \sin(2t) ; a = \frac{1}{2}$$

$$f_{(t)} = \sin(4t) ; a = \frac{1}{4}$$

Scaling

Scale factor works exactly the same with wavelets:



Wavelet function

$$\Psi_{a,b_x,b_y}(x,y) = \frac{1}{a}\Psi\left(\frac{x-b_x}{a},\frac{x-b_y}{a}\right) \cdot 2D \text{ function}$$

Reminder: The CWT is the sum over all time of the signal, multiplied by scaled and shifted versions of the wavelet function

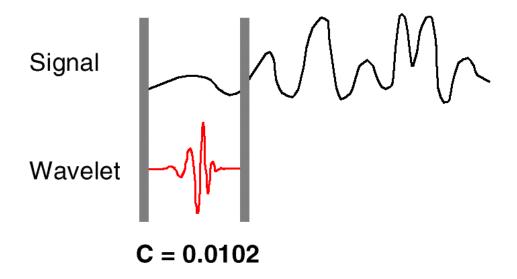
<u>Step 1:</u>

Take a Wavelet and compare it to a section at the start of the original signal

CWT

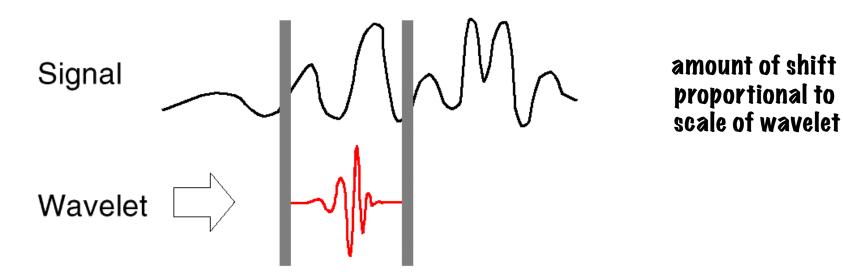
<u>Step 2:</u>

Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity.



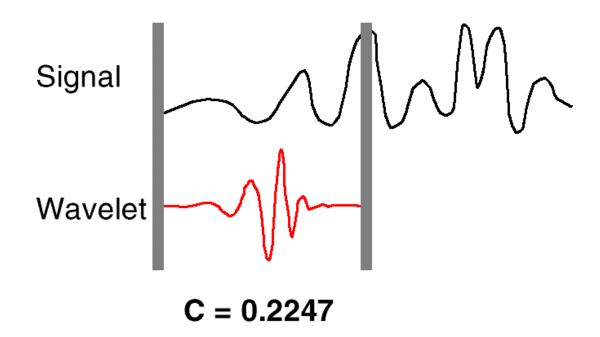
CWT

Step 3: Shift the wavelet to the right and repeat steps 1-2 until you've covered the whole signal



CWT

Step 4: Scale (stretch) the wavelet and repeat steps 1-3

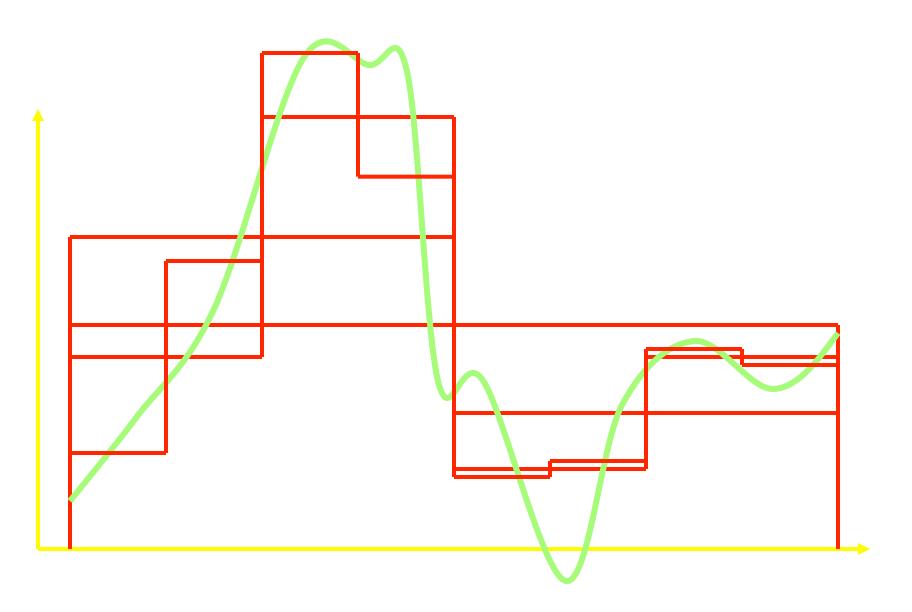


Wavelets examples Dyadic transform

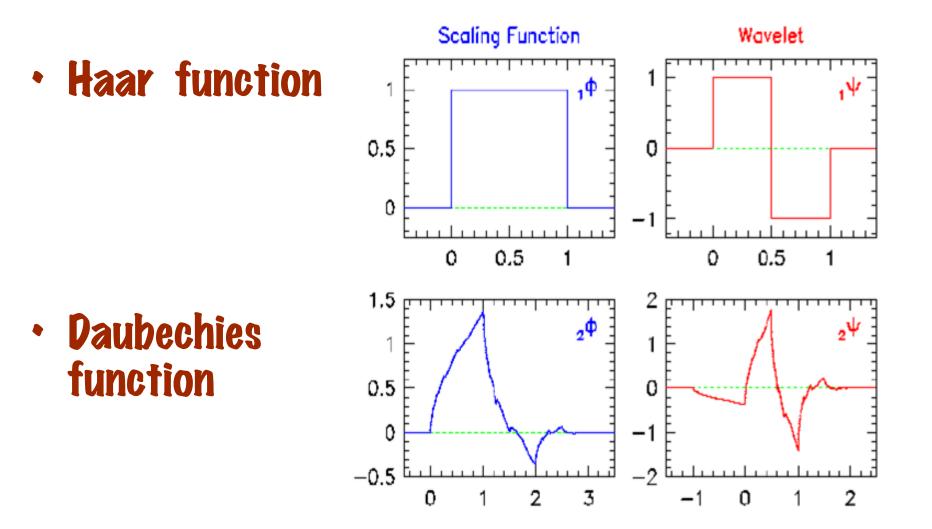
- For easier calculation we can to discrete continuous signal.
- We have a grid of discrete values that called <u>dyadic grid</u>.
- Important that wavelet functions compact (e.g. no overcalculatings).

<i>a</i> =	2^{j}
<i>b</i> =	$k2^{j}$

Haar transform



Wavelet functions examples



Properties of Daubechies wavelets

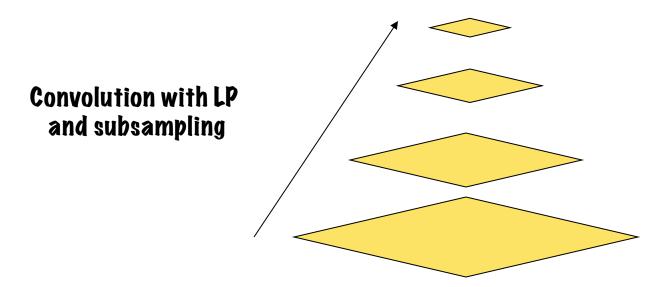
I. Daubechies, Comm. Pure Appl. Math. 41 (1988) 909.

Compact support

- finite number of filter parameters / fast implementations
- 🗆 high compressibility
- fine scale amplitudes are very small in regions where the function is smooth / sensitive recognition of structures
- Identical forward / backward filter parameters
 - \square fast, exact reconstruction
 - very asymmetric

Wavelets as Hierarchical Decomposition

- Image pyramids
 - Represent low-frequency information at coarser scale (less resolution)

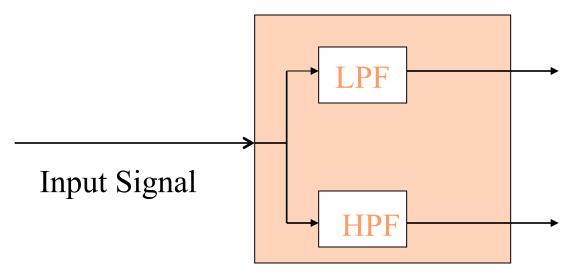


Mallat* Filter Scheme

Mallat was the first to implement this scheme, using a well known filter design called "two channel sub band coder", yielding a 'Fast Wavelet Transform'

Approximations and Details:

- Approximations: High-scale, lowfrequency components of the signal
- Details: low-scale, high-frequency components

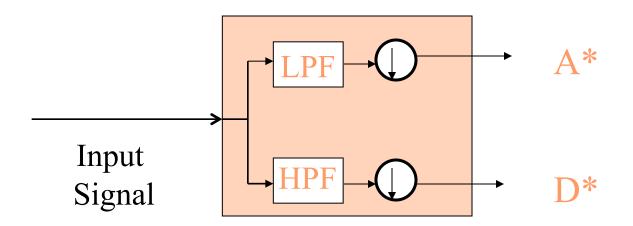


Decimation

- The former process produces <u>twice the data</u> it began with: N input samples produce N approximations coefficients and N detail coefficients.
- To correct this, we *Down sample (*or: *Decimate)* the filter output by two, by simply throwing away every second coefficient.

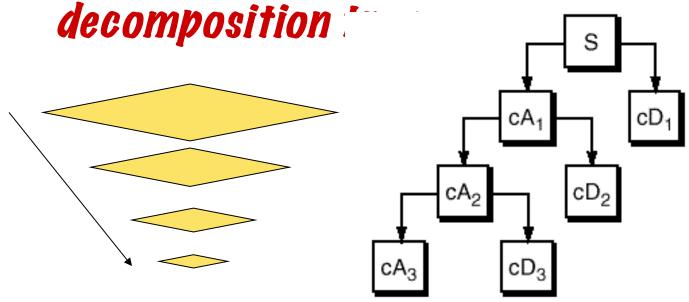
Decimation (cont'd)

So, a complete one stage block looks like:



Multi-level Decomposition

Iterating the decomposition process, breaks the input signal into many lowerresolution components: Wavelet



Orthogonality

For 2 vectors

$$\langle v, w \rangle = \sum_{n} v_{n} w_{n}^{*} = 0$$

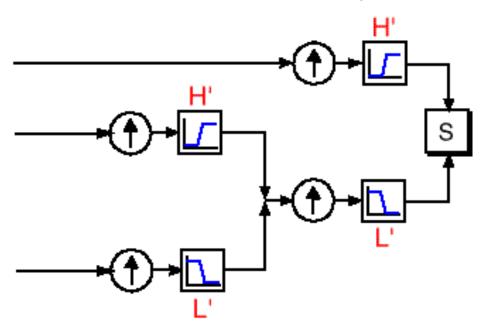
• For 2 functions
$$\langle f(t), g(t) \rangle = \int_{a}^{b} f(t)g(t) dt = 0$$

Orthogonal wavelets

- It easier calculation.
- When we decompose some image and calculating zero level decomposition we have accurate values.
- Scalar multiplication with other base function equals zero.

Wavelet reconstruction

Reconstruction (or synthesis) is the process in which we assemble all components back



Up sampling (or interpolation) is done by zero inserting between every two coefficients

Wavelets like filters

- Relationship of Filters to Wavelet Shape
 - Choosing the correct filter is most important.
 - The choice of the filter determines the shape of the wavelet we use to perform the analysis.

Wavelet Example: Harr

Mother wavelet

Scaling function

 $\psi(t) = \begin{cases} 1 & 0 \le t < 1/2, \\ -1 & 1/2 \le t < 1, \\ 0 & \text{otherwise.} \end{cases} \qquad \varphi(t) = \begin{cases} 1 & 0 \le t < 1, \\ 0 & \text{otherwise.} \end{cases}$

Orthogonality

$$\int_{-\infty}^{\infty} 2^m \psi(2^{m_1}t - n_1)\psi(2^mt - n) \, dt = \delta(m - m_1)\delta(n - n_1)$$

1D signal, discrete, 8 samples ->

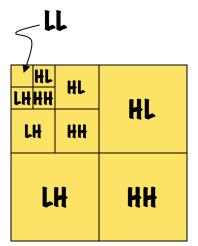
Transformation Matrix

1	1	1	1	1	1	1	1
1	1	1	1	-1	-1	-1	-1
1	1	-1	-1	0	0	0	0
0	0	0	0	1	1	-1	-1
1	-1	0	0	0	0	0	0
0	0	1	-1	0	0	0	0
0	0	0	0	1	-1	0	0
0	0	0	0	0	0	1	-1

Extending to 2D

- Must take all combinations of wavelet and scaling function at a given scale
 LL, HL, LH, HH
- Typically organized in blocks, recursively
 - LL is futher decomposed by lower frequency wavelets
 - Apply recursively to LL

u	HL
LH	HH



Wavelet Decomposition

LH

HH

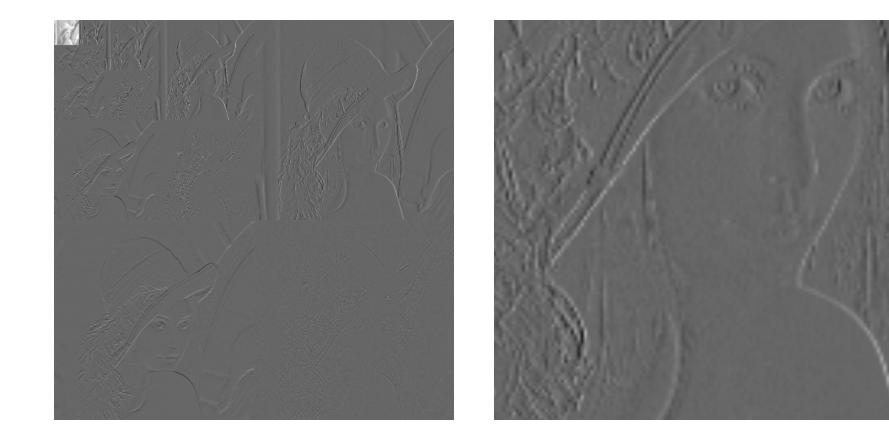
Wavelet Decomposition

HL

LH

HH

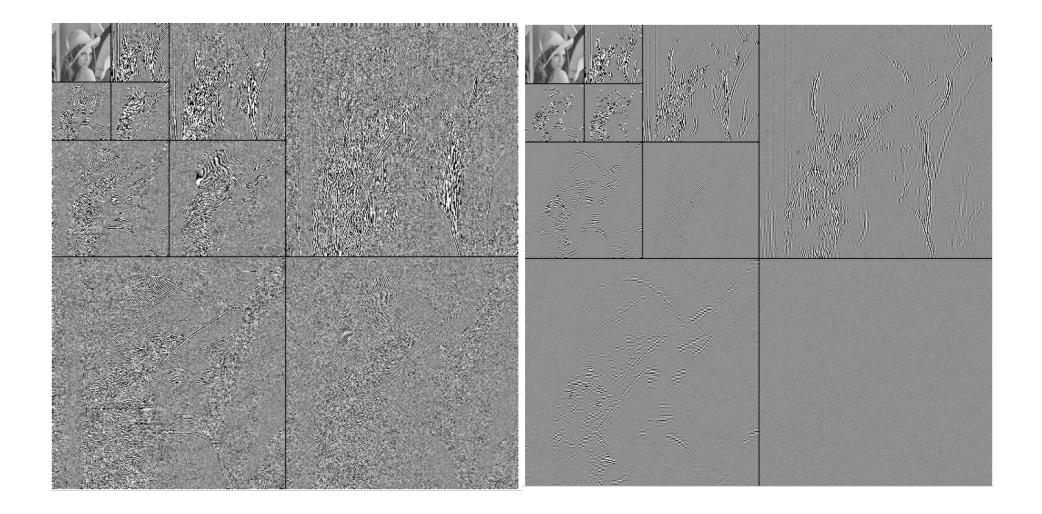
Wavelet Decomposition



Wavelet Compression Algorithm

- Like JPEG, but use DWT instead of DCT
- Steps
 - Transform
 - Weights (emprical)
 - Quantize
 - Entropy (lossless encoding) through RLE, VLC, or dictionary

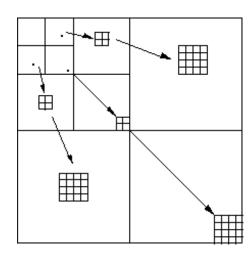
Wavelet Compression

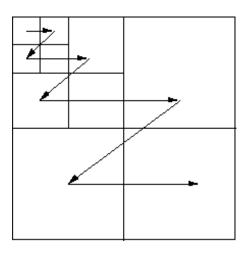


DWT Compression Artifacts

Smarter Ways To Encode

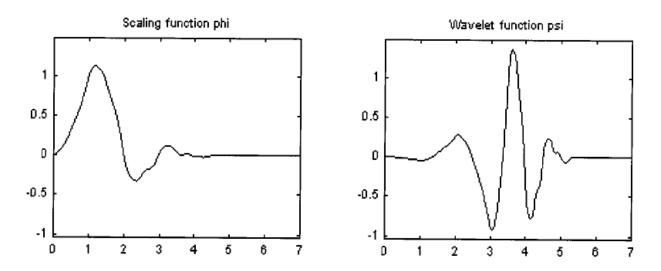
- Embedded zero-tree wavelets (Shapiro 1993)
 - Zeros (threshold) at coarse level likely to be indicative of finer level
 - E.g. edges
 - Continue through levels to hit bit quota



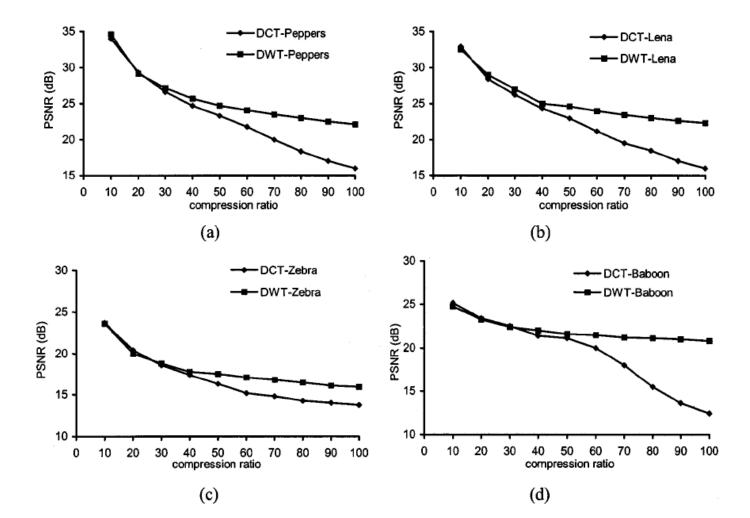


Other Wavelets

- Harr is orthogonal, symmetric, discontinuous
- Daubechies biorthogonal wavelet
 - Continuous, but not symmetric
 - Family of wavelets with parameters
 - JPEG 2000 calls for "Daubechies 9/7 biorthogonal"



Comparisons of Compression



Grgic et al., 2001