Monads

Why programmers care

by David Darais

Tuesday, February 23, 2010

Why bother?

® VWho uses monads!
® Why use monads!
® Do we need monads!?

® Will | use monads after learning about
them?

® VWhat do monads have to do with...

® Monoids? Functors? Category Theory!

Tuesday, February 23, 2010

What Monads do

Maybe (Option in ML)

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p >
case favoriteColor p of
Nothing -> Nothing
Just ¢ >
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

Tuesday, February 23, 2010

What Monads do

State

genThree :: Gen -> ([Num], Gen) genThree :: Gen -> ([Num], Gen)

gefggree J = genThree = do
(n, gl) = nextGen g n <- nextGen

nl <- nextGen
nZ <- nextGen
return [n, nl, nZ]

(nl, g2) = nextGen gl
(n2, g3) = nextGen g2
in ([n, nl, n2], g3)

Tuesday, February 23, 2010

What Monads do

|ldentity
area ::. Rectangle -> Num area :: Rectangle -> Num
area r =
area = do
let '
. W <- width r
w = width r h <- height r
h = height r J

— *
in (W * h return (w * h)

Tuesday, February 23, 2010

Monad is just two
functions

@ (>>=) ::ma->(a->mb) ->mb

® (some people call this “shove” or “bind”)

® return :: a -> m a

uuuuuuuuuuuuuuuuuuuuuuu

What Monads do

Maybe (Option in ML)

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p >
case favoriteColor p of
Nothing -> Nothing
Just ¢ >
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

Tuesday, February 23, 2010

What Monads do

Maybe (Option in ML)

lookup ::

String -> Maybe Person

bobsFavoritelltam ::

bobsFavorite"Vam

case lookup'“Bob” of
Nothing -> Nothing

Just p >

case favoriteColor p of
Nothing -> Nothing

Just ¢ >

Maybe Team

{iavoriteColor o

Person -> Maybe Color

case teamOfColor c of

Just t -> Just
teamOfColor ::

Nothing -> Notning

t

Color -> Maybe Team

Tuesday, February 23, 2010

What Monads do

Maybe (Option in ML)

lookup :: String -> Maybe Person

favoriteColor :: Person -> Maybe Color

bobsSFa prlteTzam : . Maybe Team

bobsFa oriteTkam = do
p <- |lLookup “Bob”
c <- favoriteColor p

t <- sportsTeamOfColor c
return t

teamOfColor :: Color -> Maybe Team

Tuesday, February 23, 2010

What Monads do

genThree :: Gen -> ([Num], Gen)

getThree g =
let
(n, gl) = nextGen g
(nl, g2) = nextGen gl
(n2, g3) = nextGen g2
in ([nh, nl, n2], g3)

State

genThree :: Gen -> ([Num], Gen)
genThree = do

n <- nextGen

nl <- nextGen

nZ2 <- nextGen

return [n, nl, nZ]

Tuesday, February 23, 2010

What Monads do

State

nextGen :: Gen -> (Num, Gen)

genThree :: Gen -> ([ij], Gen)
getThree g =
let v
(n, gl) = nextGen'g
(nl, g2) = nextGen gl
(n2, g3) = nextGen g2
in ([nh, nl, n2], g3)

Tuesday, February 23, 2010

What Monads do

State

nextGen :: Gen -> (Num, Gen)

genThree :: Ge|lp -> ([Num], Gen)
genThree = do
n <- nextGen
nl <- nextGen
nZ <- nextGen
return [n, nl, nZ]

Tuesday, February 23, 2010

Maybe Monad

data Maybe = Nothing | Just a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing
(Just a) >>=f = f a

return :: a -> Maybe a

return x = Maybe X

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do bobsFavoriteTeam =
p <- lookup “Bob” ; lookup “Bob” >>= (\p -> do

c <- favoriteColor p ‘ c <- favoriteColor p
t <- sportsTeamOfColor c t <- sportsTeamOfColor c
return t return t)

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = bobsFavoriteTeam =
lookup “Bob” >>= (\p -> do ; lookup “Bob” >>= (\p ->

c <- favoriteColor p | favoriteColor p >>= (\c -> do
t <- sportsTeamOfColor c t <- sportsTeamOfColor c
return t) return t))

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team bobsFavoriteTeam :: Maybe
bobsFavoriteTeam = bobsFavoriteTeam =
lookup “Bob” >>= (\p ->

— 1™ lookup “Bob” >>= (\p ->

favoriteColor p >>= (\c -> do P~ favoriteColor p >>= (\c
t <- sportsTeamOfColor c sportsTeamOfColor c >>=
return t)) return t)))

Team

(\t -> do

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team bobsFavoriteTeam :: Maybe
bobsFavoriteTeam = bobsFavoriteTeam =
lookup “Bob” >>= (\p -> lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c -> 7‘ favoriteColor p >>= (\c
sportsTeamOfColor ¢ >>= (\t -> do sportsTeamOfColor c >>=
return t))) return t)))

Team

A\t ->

Tuesday, February 23, 2010

Desugaring “do™

bobsFavoriteTeam :: Maybe Team bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = bobsFavoriteTeam = do
lookup “Bob” >>= (\p -> p <- lookup “Bob”

favoriteColor p >>= (\¢c > c <- favoriteColor p

sportsTeamOfColor c >>= (\t -> t <- sportsTeamOfColor c
return t))) return t

Tuesday, February 23, 2010

ldentity Monad

data Identity a = Identity a

(>>=) :: Identity a -> (a -> Identity b) -> Identity b

(Identity a) >>= f = f a

return :: a -> m ad

return a = Identity a

Tuesday, February 23, 2010

Desugaring “do”

area :: Rectangle -> Num area :: Rectangle -> Num
area = do area =
W <- width r width r >>= (\w -> do
h <- height r h <- height r

return (w * h) return (w * h))

Tuesday, February 23, 2010

Desugaring “do”

area :: Rectangle -> Num area :: Rectangle -> Num
area = S area =
width r >>= (\w -> do Tt width r >>= (\w ->

h <- height r height r >>= (\h ->
return (w * h)) return (w * h))

Tuesday, February 23, 2010

What’s Next!?

® Functors and Monoids (useful like monads)
® Monad Transformers (necessary)

® A way to compose multiple monads
® Arrows (really cool)

® Also generalizes boilerplate

® All monads are arrows

Tuesday, February 23, 2010

Building the State Monad

® State Monad in Scheme
® DFS state passing style

® DFS monad style

uuuuuuuuuuuuuuuuuuuuuuu

