
Getting Started:

Arithmetic, Algebra, and Computing

1

Arithmetic is Computing

• Fixed, pre-defined rules for primitive operators:

2 + 3 = 5

4 × 2 = 8

cos(0) = 1

2

Arithmetic is Computing

• Fixed, pre-defined rules for primitive operators:

2 + 3 → 5

4 × 2 → 8

cos(0) → 1

• Rules for combining other rules:

Evaluate sub-expressions first

4 × (2 + 3) → 4 × 5 → 20

Precedence determines subexpressions:

4 + 2 × 3 → 4 + 6 → 10

3-5

Algebra as Computing

Definition:

f(x) = cos(x) + 2

Expression:

f(0) → cos(0) + 2 → 1 + 2 → 3

• First step uses the substitution rule for functions

6-7

Scheme Notation

• Put all operators at the front

• Start every operation with an open parenthesis

• Put a close parenthesis after the last argument

• Never add extra parentheses

Old New

1 + 2 (+ 1 2)

4 + 2 × 3 (+ 4 (* 2 3))

cos(0) + 1 (+ (cos 0) 1)

8

Scheme Notation

• Use the keyword define instead of =

• Put define at the front, and group with parentheses

• Move open parenthesis from after function name to before

Old New

f(x) = cos(x) + 2 (define (f x) (+ (cos x) 2))

• Move open parenthesis in function calls

Old New

f(0) (f 0)

f(2+3) (f (+ 2 3))

9-10

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

11

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)

12

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)
 → (+ 1 2)

13

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)
 → (+ 1 2)
 → 3

14

Beyond Numbers: Booleans

Numbers are not the only kind of values:

Old New

1 < 2 → true (< 1 2) → true

1 > 2 → true (> 1 2) → false

1 > 2 → true (> 1 2) → false

2 ≥ 2 → true (>= 1 2) → true

15

Beyond Numbers: Booleans

Old New

true and false (and true false)

true or false (or true false)

1 < 2 and 2 > 3 (and (< 1 2) (> 2 3))

1 ≤ 0 and 1 = 1 (or (<= 1 0) (= 1 1))

1 ≠ 0 (not (= 1 0))

16

Beyond Numbers: Symbols

(symbol=? 'apple 'apple) → true

(symbol=? 'apple 'banana) → false

17

Beyond Numbers: Images

(rectangle 35 35 'filled 'red) →

(circle 13 'filled 'blue) →

(overlay) →

(overlay/xy -5 -5) →

(image=? (overlay))

 → (image=?)

 → true

18-21

Programming with Images

(define (anonymize i)
 (overlay/xy

(circle (/ (image-height i) 3)
'solid
'blue)

(* -1/6 (image-height i))
(* -1/6 (image-width i))
i))

(anonymize) → ... →

22

Conditionals

23

Conditionals in Algebra

General format of conditionals in algebra:

{
answer question

...
answer question

Example:

abs(x) = { x if x > 0
-x otherwise

abs(10) = 10

abs(-7) = 7

24

Conditionals

General syntax of cond in Scheme:

(cond
 [question answer]
 ...
 [question answer])

• Any number of cond lines

• Each line has one question expression and one answer expression

(define (abs x)
 (cond
 [(> x 0) x]
 [else (- x)]))

(abs 10) "should be" 10
(abs -7) "should be" 7

25-26

Completing max-image

• Use cond to complete max-image

(define (max-image a b)
 (cond

 [(bigger-image? a b) a]
 [else b]))

27

Evaluation Rules for cond

First question is literally true or else

(cond
 [true answer]
 ...
 [question answer])

→ answer

• Keep only the first answer

Example:

(* 1 (cond
 [true 0]))

 → (* 1 0) → 0

28-31

Evaluation Rules for cond

First question is literally false

(cond
 [false answer]
 [question answer]
 ...
 [question answer])

→

(cond
 [question answer]
 ...
 [question answer])

• Throw away the first line

Example:

(+ 1 (cond
 [false 1]
 [true 17]))

 → (+ 1 (cond
 [true 17]))

 → (+ 1 17) → 18

32-33

Evaluation Rules for cond

First question isn't a value, yet

(cond
 [question answer]
 ...
 [question answer])

→

(cond
 [nextques answer]
 ...
 [question answer])

where question → nextques

• Evaluate first question as sub-expression

Example:

(+ 1 (cond
 [(< 1 2) 5]
 [else 8]))

 → (+ 1 (cond
 [true 5]
 [else 8]))

 → (+ 1 5) → 6

34-35

Evaluation Rules for cond

Only queston is false answers

(cond
[false 10])

 → error: all questions false

36

Finding Images

(image-inside?) → true

(image-inside?) → false

37-38

Image Tests in Conditionals

Now we can combine such operators with cond:

; detect-person : image image image -> image
; Returns a or b, depending on which is in i
(define (detect-person i a b)
 (cond

 [(image-inside? i a) a]
 [(image-inside? i b) b]))

(detect-person)

"should be"

39

Compound Data

40

Finding and Adjusting Images

Suppose we want to write frame-person:

(frame-person)

"should be"

Need an operator that reports where an image exists

41-42

Finding an Image Position

find-image : image image -> num num

Must return a single value

Correct contract:

find-image : image image -> posn

• A posn is a compound value

43-44

Positions

• A posn is

 (make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

A posn is a value, just like a number, symbol, or image

45-47

posn-x and posn-y

The posn-x and posn-y operators extract numbers from a posn:

(posn-x (make-posn 1 2)) → 1

(posn-y (make-posn 1 2)) → 2

• General evaluation rules for any X and Y:

(posn-x (make-posn X Y)) → X

(posn-y (make-posn X Y)) → Y

48-49

Positions and Values

Is (make-posn 100 200) a value?

Yes.

A posn is

 (make-posn X Y)

where X is a num and Y is a num

50

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y) → (make-posn Z Y)
when X → Z

(make-posn X Y) → (make-posn X Z)
when Y → Z

Example:

(make-posn (+ 1 2) 200) → (make-posn 3 200)

51

Posn Examples

(make-posn (+ 1 2) (+ 3 4))

(posn-x (make-posn (+ 1 2) (+ 3 4)))

; pixels-from-corner : posn -> num
(define (pixels-from-corner p)
 (+ (posn-x p) (posn-y p)))
(pixels-from-corner (make-posn 1 2))

; flip : posn -> posn
(define (flip p)
 (make-posn (posn-y p) (posn-x p)))
(flip (make-posn 1 2))

Copy

52

Programmer-Defined Compound Data

53

Other Kinds of Data

Suppose we want to represent snakes:

• name

• weight

• favorite food

What kind of data is appropriate?

Not num, bool, sym, image, or posn...

54-55

Data Definitions and define-struct

Here's what we'd like:

A snake is
 (make-snake sym num sym)

But make-snake is not built into DrScheme

We can tell DrScheme about snake:

(define-struct snake (name weight food))

Creates the following:

• make-snake
• snake-name
• snake-weight
• snake-food

56-59

Data Definitions and define-struct

Here's what we'd like:

A snake is
 (make-snake sym num sym)

But make-snake is not built into DrScheme

We can tell DrScheme about snake:

(define-struct snake (name weight food))

Creates the following:

(snake-name (make-snake X Y Z)) → X
(snake-weight (make-snake X Y Z)) → Y
(snake-food (make-snake X Y Z)) → Z

60

