
Arrays
Specifications section, Algorithms topic, Lecture 9

Pavel Panchekha
CS 6110, U of Utah
4 February 2020

2 × x = 5 − 3 × y

Substitution
Solve linear equations by eliminating variables

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

2 × x + 8 × y = 0

(5 − 3 × y) + 8 × y = 0

5 + 5 × y = 0

Variable elimination is a standard logic technique
Recall proof by resolution in boolean logic

y = − 1

Equivalent to one large equation:

max(4y − 24, − 2 + 6y − 2x) ≤ 2z ≤ min(6 − 4y,8 − 2y + 2x,6 − y)

max(4y − 24, − 2 + 6y − 2x) ≤ min(6 − 4y,8 − 2y + 2x,6 − y)

2y − 12 ≤ 2z
−1 + 3y − x ≤ 2z

2z ≤ 3 − 2x
2z ≤ 4 − y + x
2z ≤ 6 − y

−y ≤ 0

Multiple Variables

SAT in Integers

x, y := v ∣ − x ∣ x ∨ y ∣ x ∧ y

0 ≤ v
v ≤ 1

v a
a ≤ 1 − x
1 − x ≤ a

a
x ≤ a
y ≤ a
a ≤ x + y

a
a ≤ x
a ≤ y
x + y ≤ a + 1

SAT problems can be rephrased as integer problems

So solving integer inequalities is as hard as SAT.

Class Progress
Logical

reasoning
Program

logics
Static

analysis

First-order Logic Decision Procedures

Mixing
Theories Equality Integers Arrays

Arrays
Reasoning about reads and writes

Generating new equations for other solvers

Extensional reasoning about arrays
Symbolic reasoning about quantifiers

Limited quantifiers with array properties
Reasoning about sorting, partitions, and append

Array Elements
Delegating is the key to good management

The Solver Query
Statement p
(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ …

Assignment Γ
a1 ∧ ¬b2 ∧ …

Today: a solver for array queries

p := i = j ∣ u = v ∣ ¬p

Γ = (a[i] = a[j]) ∧ (i ≠ j) Γ = (a[i := x][j] = y) ∧ (x ≠ y)
Γ = (a[a[i]] = i) ∧ (a[i] ≠ i)

x := a[i] a := A ∣ a[i := x]

o′ = o[len(o) := r[i]]

Whence Queries

def append(l, r):

out = l[:]

for i in range(len(r)):

out.append(r[i])

return out

Starting Simple
Consider a query without writes to the array:

Γ = (a[a[i]] = i) ∧ (a[i] ≠ i)

How is this different from term equality?

Γ = (f(f(i)) = i) ∧ (f(i) ≠ i) Equivalence
classes, …

Array writes are the core challenge

An array solver will need an equality solver.

Array Writes
The read-over-write axioms:

i = j → a[i := x][j] = x i ≠ j → a[i := x][j] = a[j]

Collect all reads and all writes:

 writesn
an = ajn[in := xn]

 readsl
vl = al[il]

b
b2i := 1

a
a2

a3

a4

a5

i := 2 i := 4
j := 5

k := 3

[l][l]

No array reasoning!

Example
Γ = (a[i := x][j := y][k] = x) ∧ (x ≠ y)

b = a[i := x]
c = b[j := y]

Writes
u = c[k]
Reads

a b c
[k][k]

v = b[k]

[k]

w = a[k]

j = k → u = y
j ≠ k → u = v

i = k → v = x
i ≠ k → v = w

Generate new formula
from the axioms

Exercise
Γ = (a[i := x][j] = b[j := y][i])

c = a[i := x]
d = b[j := y]

Writes
u = c[j]
Reads

v = d[i]

a

b

c
[k]

d
[k]

[k]

s = a[j]

[k]

t = b[i]

j = i → u = x
j ≠ i → u = w

i = j → v = y
i ≠ j → v = t

Conclusion
Array queries without writes are just equality queries:

Γ = (f(f(i)) = i) ∧ (f(i) ≠ i)
Array writes translate to equality queries:

j = k → u = y
j ≠ k → u = v

i = k → v = x
i ≠ k → v = w

Reasoning about array elements, not arrays

Extensional Arrays
Simple quantified properties

Extensionality
Add a construct for array equality:

p := i = j ∣ u = v ∣ ¬p x := a[i] a := A ∣ a[i := x]
∣ a = b

Define array equality as quantified equality:

(∀i, a[i] = b[i]) → a = b

Alternation

Example
i ≠ j ∧ a[i] ≠ y ∧ a[i := x][j := y] = a

∀k, a[i := x][j := y][k] = a[k]∃i, ∃j, ∃a, ∃x, ∃y, ~~~~~~

So: how do we reason about array equality?

=

a b ci := x j := y

?

New variableNo alternation

Inequalities
i ≠ j ∧ a[i] ≠ y ∧ a[i := x][j := y] ≠ a

¬∀k, a[i := x][j := y][k] = a[k]
∃i, ∃j, ∃a, ∃x, ∃y, ~~~~~~ ∃k, a[i := x][j := y][k] ≠ a[k]

Array inequalities do not introduce alternation:

So only need to reason only about true equalities.

Reductions
Equalities are related to writes:

a

b c

=

a = b[i := x]

=?
Can differ
at index i

a′ ={i} b

Partial equality
If , that means:a = b[i := x]

a[i] = x ∧ ∀k, k ≠ i → a[k] = b[k]

Partial equality has a transitivity rule:

a =I b ∧ b =J c → a =(I ∪ J) c

It can be partialized further with reads:

a =I b ↔ a =i,I b ∧ a[i] = b[i]

Exercise

a[i := 3] = b[j := 5] ∧ a[i] = b[j]

Rewrite in terms of partial equality in :i, j

a′ =i a
a′ [i] = 3

a′ =i,j a
a′ [j] = a[j]

b′ =j b
b′ [i] = 5

b′ =i,j b
b′ [i] = b[j]

Algorithm
Construct graph of array writes1.
Propagate equalities backwards2.
Convert to common partial equality3.
Delete partial equalities (always satisfiable)4.

=

a b ci := x j := y

=j=i, j a[j] = y
i = j ∨ a[i] = x

a =j b
a =i,j a

Partial equality of
array variables

Course Updates
Project Proposals

Project Groups
Overall, we have 6 group and 6 solo projects

Oliver Abishek

Pranav Kiranmayee

Skyler Roxy

Calvin Saivamshi

Thahnson Matthew

Kylee Amit

Group Sam

William

Tanmay

Sona

Bradlee

Haochen

Peter

Solo

Project Proposals
Get in touch with your project partner

Decide on project idea and start writing proposal

Presentations are short (8 minutes group / 4 min solo)

Groups assigned 30 January

Proposals due 6 February

Feedback 11 February

Presentations 18 February

Logic topic of the course

Theory or Practice

4

5

6

7 Interest

Stoked to move onto more algorithmic related material.

Don't listen to theory haters. I wanna freebase the theory stuff.

4

5

6

7 Clarity

Array Properties
A quantified fragment for array subsets

Algorithm
Summary of extensional array solver:

Negated properties are existential, new variable

Propagate backwards across writes

Read-only formula + generated domain formula

No arraysEasy

What else does this handle?

Array Properties
Array equality is our first property of arrays

Each of these is defined by quantification over indices:

sorted(A) partitioned(Al, Ar) x ∉ A

sorted(A) := ∀i, ∀j, i < j → A[i] < A[j]

partitioned(Al, Ar) := ∀i, ∀j, Al[i] < Ar[j]

x ∉ A := ∀i, A[i] ≠ x

Array Properties
sorted(A) := ∀i, ∀j, i < j → A[i] < A[j]

Common pattern in array predicates:
Universal quantifier over index variables

Domain formula over index variables (guard)

Domain formula over array values

Pattern called the array property fragment
Array equality one example of an array property

Exercise
Which of these are in the array property fragment:

∀i, a[i] = i → ∃j, a[j] = 2

∀i, ∀j, A[i] = B[j]

∀i, ∀j, a[i] < i → a[j] = j

a ≠ b → ∃i, a[i] = b[i]

∀s, ∀t, ∀r, s < r ∧ r < t → B[r] = A[s] + A[t]

Solving fragment
∀i, ⋯, ∀j, F(i, …, j) → G(a[i], …, b[j])

Construct graph of array writes1.
Propagate properties backwards2.

Replace array values with new variables3.

i = n ∧ v = x ∨G(a[n := x][i]) ↔ G(v) ∧ i ≠ n ∧ v = a[i]()
a[i] < a[j] ⇝ x < y ∧ (i = j → x = y)

Details in
textbook

Summary
How an SMT solver works

Solver
First-order
Logic Input

Unquantified
Input

Conjunctive
Form

Conjunction of
Literals

Per-Theory
Queries

Domain-specific
Reasoning

Quantifier elimination

Integer
n ∣ x

Arrays
F(i) → G(a[i])

Equality
x + y = y + x

Tseityn

DPLL(T)

Γ
Γ ∧ l

Γ ∧ ¬l
Solver

Nelson-Oppen
Γ

Γ1 Γ2E
Integer Array

Domain Reasoning
Equality

Integers

Arrays

+ ×

a 2

Term database
Equivalence classes

Model building

x + 2y ≤ z
z ≤ 2x − y

x + 2y ≤ 2x − y

Variable elimination
Complexity of integers

Matrix form

a[k := 2] = b

b[k] = 2
a =k b

Backward propagation
Translation to theory

Mutation graph

To do:
Course feedback
Read Chapter 11
Project Proposal

Web Pages
Next class:

