
Integers
Specifications section, Algorithms topic, Lecture 8

Pavel Panchekha
CS 6110, U of Utah
30 January 2020

Subterm Sharing
+

f

a b

f

+a

b a

Avoid multiple copies of one expression
Make equal things identical to enforce equality axioms

Equivalence Classes
f

a

f

b
a b

f(a) = b f(b) = a

How to represent equivalence classes in code?

Congruence Closure
f

a

f

b
a b

for (f, args), name in this.names.items():
arg_classes = map(this.classof, args)
name2 = this.add(f, arg_classes)
this.eqclass[name] = name2

Class Progress
Logical

reasoning
Program

logics
Static

analysis

First-order Logic Decision Procedures

Mixing
Theories Equality Integers Arrays

Integers
Solving conjunctions of integer equalities

Back to high school with elimination and substitution

Variable elimination for integer inequalities
Combining two inequalities into one

How fast can integer reasoning be?
SAT, multiplication, and rational numbers

Systems of Equations
Flashback to high school math

No negations!

The Solver Query
Statement p
(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ …

Assignment Γ
a1 ∧ ¬b2 ∧ …

Today: a solver for integer queries

p := x < y ∣ x = y

Γ = x < 1 ∧ 0 < x Γ = x < y ∧ y < z ∧ x + z < y

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

x, y := x + y ∣ x × n ∣ v ∣ n

Standard Form
Convenient to use (in a consistent direction)≤

x < y ⇝ x ≤ y − 1 x = y ⇝ x ≤ y ∧ y ≤ x

Convenient to distribute multiplications

1 + 2 × (x + 3 × y + 4) ≤ y ⇝ 2 × x + 6 × y ≤ − 9

Convenient to separate constants and variables

(a + b) × n ⇝ a × n + b × n

Result: matrix formula Mx ≤ C

Examples
Γ = x < 1 ∧ 0 < x Γ = x < y ∧ y < z ∧ x + z < y

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

1

-1
x ≤ 0

-1

2 3

-2 -3

1 4

-1 -4

x

y
≤

5

-5

0

0

1 -1

1 -1

1 -1 1

x

y

Z

≤
-1

-1

-1

Equations
Restrict to (for now)Mx ≤ C Mx = C

1 -1

1 -1

1 -1 1

x

y

z

≤
-1

-1

-1

=

Equations
Restrict to (for now)Mx ≤ C Mx = C

1 -1

1 -1

1 -1 1

x

y

z

=
-1

-1

-1

-1

Matrix inverses only work for square matrices
Let’s look at two other techniques for solving linear equations

x = − 4 × y

Substitution
Solve linear equations by eliminating variables

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

2 × (−4 × y) + 3 × y = 5

−5 × y = 5

y = − 1

2 × x = 5 − 3 × y

Substitution
Solve linear equations by eliminating variables

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

2 × x + 8 × y = 0

(5 − 3 × y) + 8 × y = 0

5 + 5 × y = 0

Variable elimination is a standard logic technique
Recall proof by resolution in boolean logic

y = − 1

−5 × y = 5

Elimination
Solve linear equations by simplifying equations

Γ = 2 × x + 3 × y = 5 ∧ x + 4 × y = 0

2 3

1 4

x

y
= 5

0-2

0 -5

1 4

x

y
= 5

0

Create row combinations with 0 elements
Gaussian elimination algorithm does this systematically

Elimination
Systematic combinations of equations

a ? ?

b ? ?

c ? ?

d ? ?

x

y

z
=

w

u

v

q

a
-b

Elimination
Systematic combinations of equations

a ? ?

0 ? ?

c ? ?

d ? ?

x

y

z
=

w

a u - b w

v

q

a
-b

Elimination
Systematic combinations of equations

a ? ?

0 b ?

0 c ?

0 d ?

x

y

z
=

w

a u - b w

a v - c w

a q - d w

a

-c

…

Elimination
Systematic combinations of equations

a ? c

0 a2 b

0 0 a3

0 0 0

x

y

z
=

w

?

?

?

b
-c

…

Elimination
Systematic combinations of equations

a 0 0

0 a2 0

0 0 a3

0 0 0

x

y

z
=

?

?

?

?

a3
-c

…

Overall algorithm is to solve equationsO(n3) n
Beware of a special case, pivoting, for 0 coefficients

Inequalities
Variable elimination generalizes substitution

Core Idea

2x + 3y ≤ 72x + 3y ≤ 7
3x − y + z ≤ 5
x − 2y − z ≤ 3

Pick a variable () to eliminate from the inequalitiesz

z ≤ 5 − 3x + y
x − 2y − 3 ≤ z

x − 2y − 3 ≤ 5 − 3x + y4x − 3y ≤ 8

New inequalities with one fewer variable

Example
1 -1

1 -1

1 -1 1

x

y

z

≤
-1

-1

-1

Eliminate the variable from these inequalitiesz
1 -1

1 0

x

y
≤

-1

-2

Now eliminate the variabley

1 x ≤ -2 Satisfiable

Multiple Variables
Group by negative, positive, or zero coefficient

−z + 2y ≤ 12
−z + 3y − x ≤ 1

−y ≤ 0

Rewrite to isolate variable

2y − 12 ≤ z
−1 + 3y − x ≤ z

z + 2x ≤ 3
z + y − x ≤ 4

2z − y ≤ 6

z ≤ 3 − 2x
z ≤ 4 − y + x

2z ≤ 6 − y

−y ≤ 0

Make left and right equal with common multiple:

2y − 12 ≤ z
−1 + 3y − x ≤ z

z ≤ 3 − 2x
z ≤ 4 − y + x

2z ≤ 6 − y

−y ≤ 0

Multiple Variables

4y − 24 ≤ 2z
−2 + 6y − 2x ≤ 2z

2z ≤ 6 − 4x
2z ≤ 8 − 2y + 2x
2z ≤ 6 − y

−y ≤ 0

Equivalent to one large equation:

max(4y − 24, − 2 + 6y − 2x) ≤ 2z ≤ min(6 − 4y,8 − 2y + 2x,6 − y)

max(4y − 24, − 2 + 6y − 2x) ≤ min(6 − 4y,8 − 2y + 2x,6 − y)

4y − 24 ≤ 2z
−2 + 6y − 2x ≤ 2z

2z ≤ 6 − 4x
2z ≤ 8 − 2y + 2x
2z ≤ 6 − y

−y ≤ 0

Multiple Variables

max(4y − 24, − 2 + 6y − 2x) ≤ min(6 − 4y,8 − 2y + 2x,6 − y)

Equivalent to pairwise inequalities:

4y − 24 ≤ 6 − 4y −2 + 6y − 2x ≤ 6 − 4y

4y − 24 ≤ 8 − 2y + 2x

4y − 24 ≤ 6 − y

−2 + 6y − 2x ≤ 8 − 2y + 2x

−2 + 6y − 2x ≤ 6 − y

Add back equations without :z
−y ≤ 0

Multiple Variables

Eventually, we eliminate down to 1 variable

x ≤ 2
2x ≤ 3
3x ≤ 4

1 ≤ x 0 ≤ 1

Resulting equations are easy to check:

1 ≤ 2
2 ≤ 3
3 ≤ 4

0 ≤ 1

Multiple Variables

Course Updates
Project Proposals

Project Ideas

Verifying a neural network using SMT—

Verifying Rust code with a model checker—

SMT for type checking (“Liquid Types”)—

Finding math counterexamples with SMT—

Some memorable projects from past years

Project Proposals
1 page Project Proposals due in a week

You’ve been assigned a group, unless you wanted solo project

Make sure to check the rubrik for what to include:

Solo Assignment

Language design

Example code

Likely complications

Per-milestone plan

Goal

Group Project

User need

Technical approach

Per-milestone plan

Alternative Assignment

Implement a new programming language—

Add annotations for verification—

Generate verification conditions to SMT—

Verify and test a quicksort implementation—

The solo assignment is verifying quicksort:

Complexity
Why integer equations are hard

Speed
Algorithm works but produces a lot of inequalities

Group inequalities into inequalitiesn n+ + n− + n0

Form new inequalities, plus old onesn+n− n0

If and , takes to n+ = n− = n/2 n0 = 0 n n2/4

After all variables eliminated, equationsk n2k /4k

There are tricks to skip redundant equations…
In practice, variants of linear programming are used

Linear optimization
Finds that form a vector x:x1, …, xn

Maximize cTx
Given M x ≤ b

Efficient algorithms exist for linear optimization
Simplex Algorithm 1947 Average O(n^3), worst-case O(2^n)

Ellipsoid Algorithm 1979 Worst-case O(n^4)

Karmarkar’s Algorithm 1984 Worst-case O(n^3.5)

Path-following 2018 Worst-case O(n^2.372), practical sizes O(n^3)

For real x}

Non-integers
Rationals and reals are less complex than integers

Linear optimization efficiently solves linear real inequalities

Tarsi’s algorithm eliminates variables even with multiplication

Multiplication queries relatively efficient (doubly exponential)

Luckily, real-world integer queries tend to be simple
Multiplication and divisibility reasoning rare

Real solutions can guide search for integer solutions

SAT in Integers

x, y := v ∣ − x ∣ x ∨ y ∣ x ∧ y

0 ≤ v
v ≤ 1

v a
a ≤ 1 − x
1 − x ≤ a

a
x ≤ a
y ≤ a
a ≤ x + y

a
a ≤ x
a ≤ y
x + y ≤ a + 1

SAT problems can be rephrased as integer problems

So solving integer inequalities is as hard as SAT.

Quantifiers
What about quantified linear equations?

∃x, P(x) ⇔ Q

Is it always possible?

Adding relation makes elimination possiblen ∣ x

∃x, x < y ∧ −y < x

0 < y

∃x, 2x = y

?

Quantifier Elimination

Quantifiers
What about quantified linear equations?

Rewrite as quotient, remainder of scx n—

cx < E1 E2 < cx n ∣ cx + E3 n ∤ cx + E4

Test all possible remainders—
Combine remaining inequalities—
Result is formula without x—

Details in Chapter 7 of textbook

Fact about integer polynomialFact about
programs

Multiplication
For any program , consider .P ∃x, P(x) = y
There is a polynomial so thatQ(y, x1, …, x11)

∃x, P(x) = y ⇔ ∃x1⋯∃x11, Q(y, x1, …, x11) = 0

Facts about multiplication as hard as any fact at all!
That said, heuristics can handle some simple cases…

Examples
This is true only when is prime:n

There’s an for which this cannot be proven or disproven:n

To do:
Course feedback
Read Chapter 8
Assignment 2

Integers
Next class:

Integers
Solving conjunctions of integer equalities

Back to high school with elimination and substitution

Variable elimination for integer inequalities
Combining two inequalities into one

How fast can integer reasoning be?
SAT, multiplication, and rational numbers

Theories

Indicies

Variables

Decomposition

Read over

Write

Fragment

Array

Properties

To do:
Course feedback
Read Chapter 8
Assignment 2

Integers
Next class:

