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The Approach

First-order 
statement 

∀∃p

Proof of ∀∃p

Proof of ¬∀∃p
or

Standard 
Form p′ 

Proofs of 
q1, q2, q3

Domain solvers 
q1 ∧ q2 ∧ q3



DPLL with Theories
Want extension to first-order theories

The  are literals from the theoryai, bi, …

(¬(x < 0) ∨ (x × x > 0)) ∧ (¬(x = 0) ∨ (x × x = 0) ∧ …

x < 0 ∧ (x × x = 0) ∧ …

Statement p Assignment Γ
(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ … a1 ∧ ¬b2 ∧ …

a1 a2 b1 b2

a1 b2



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 3

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?3 ?1 → ?5


?3 → ?4 ?4

C = D? Theories disagree

Choose C = DG¬



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

First-order Logic Decision Procedures

Mixing 
Theories Equality Integers Arrays



Equality
Turning syntactic equality into pointer equality

Pointer sharing in tree structures

Solving equality queries with congruence closure
Rebuilding to ensure accuracy

Model-based quantifier instantiation
And why the heuristic doesn’t work in general



Term Databases
A model of the reflection axioms



The Solver Query
Statement p
(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ …

Assignment Γ
a1 ∧ ¬b2 ∧ …

Today: a solver for equality queries

Γ = (s1 = t1) ∧ (s2 = t2) ∧ (s3 ≠ t3) ∧ . . .

Γ = a = b ∧ b = c ∧ a ≠ c Γ = a = b ∧ f(a) ≠ f(b)

Γ = f(a) = b ∧ f(b) = a ∧ a ≠ b



Modeling

Intuitive approach starts with the true equalities
Build model of assumptions, check conclusions

a b c f( )a f( )b

Goal is to check all relevant instances of axioms

Substitution 
∀x, ∀y, x = y → f(x) = f(y)

Reflection 
∀x, x = x



Term Representation
Query is a list of pairs of terms, plus a flag for negation

Γ = (s1 = t1) ∧ (s2 = t2) ∧ (s3 ≠ t3) ∧ . . .

type EqQuery  = List (Boolean, Term, Term)

Terms are syntax trees:

+

fa

a b

f

+a

b a
[ = ,



Subterm Sharing
+

fa

a b

f

+a

b a



Subterm Sharing
+

f

a b

f

+a

b a

Avoid multiple copies of one expression
Make equal things identical to enforce equality axioms



Term Hashing
Create term database by assigning names to terms

class TermDB: 
names : Dict (FuncName, List Int) Int 
def add(this : TermDB, term : Term) → Int

add recursively reuses names when possible
def add(this, term): 
arg_names = map(this.add, term.arguments) 
key = (term.function, arg_names) 
if key not in this.names: 
this.names[key] = len(this.names) 

return this.names[key]



Term Database
Equality solver uses term database

def equality_solver(query : EqQuery) → Bool: 
db = TermDb() 
for (is_eq, expr1, expr2) in query: 
name1 = db.add(expr1) 
name2 = db.add(expr2)

Term database models reflection axiom
Same expression has identical name in database
Need ability to add new equalities



Example

f(g(a,1),2) = 5 ∧ g( f(1,5), g(a,1)) = 3 ∧ g(a,1) ≠ a

How many terms in the term database?

1 1

2 2

3 3

4 5

5 a 

6 g 5 1

7 f 1 4

8 g 7 6

9 f 6 2



Basic Checking
Need to check satisfiability after adding all terms

Γ = s1 = t1 ∧ s2 = t2 ∧ s3 ≠ t3 ∧ s4 ≠ t4

¬Γ = (s1 = t1 ∧ s2 = t2) → (s3 = t3 ∨ s4 = t4)

Check disequalities via names

neqs = [(s, t) for (iseq, s, t) in query if not iseq] 

return not any(db.add(s) == db.add(t) for (s, t) in neqs)



Equivalence Graphs
Adding assumptions to the term database



Adding equalities
Γ = f(a) = b ∧ f(b) = a ∧ a ≠ b

f

a

f

b

Need to add equalities to the term database

Must respect substitution rule:

a = b → f(a) = f(b)



Equivalence Classes
f

a

f

b



Equivalence Classes
f

a

f

b
a b

f(b) = a



Equivalence Classes
f

a

f

b
a b

f(a) = b f(b) = a



Equivalence Classes
f

a

f

b
a b

f(a) = b f(b) = a

How to represent equivalence classes in code?



ClassName

Equivalence Classes
How to represent equivalence classes in code?

class TermDB: 
eqclass : Dict Int Int

Initially, each node in its own class:

def add(this, term): 
# … 
this.eqclass[name] = name



Equivalence Classes
On merging, pick one class as the winner

def merge(term1, term2): 
class1 = this.classof(this.add(term1)) 
class2 = this.classof(this.add(term2)) 
this.eqclass[class1] = class2

Class of a node determined recursively:

def classof(name): 
cls = this.eqclass[name] 
if cls == name: return pls 
else: return this.classof(cls)



Congruence Closure
f

a

f

b
a b

a = b



Congruence Closure
f

a

f

b
a b

a = b

Same!Same!

Merging two nodes can make other nodes equal
Need to merge those nodes to ensure correctness



Congruence Closure
f

a

f

b
a b

for (f, args), name in this.names.items(): 
arg_classes = map(this.classof, args) 
name2 = this.add(f, arg_classes) 
this.eqclass[name] = name2



Checking

eqs = [(s, t) for (iseq, s, t) in query if iseq] 

for s, t in eqs: 
this.merge(s, t) 

this.merge_upward()

Use “merge” on true equalities:

Check false equalities at the end



Example

f(a, b) = c ∧ f(b, c) = f(c, b) ∧

How many classes in the term database?

1 a

2 b

3 c

4 f 1 2

5 f 2 3

6 f 3 2

7 f 3 2

9 f 1 1

f( f(a, b), b) = f(a, a) ∧ f(a, b) = f(a, a)



Speed
Lots of ways to make this faster

Fix up congruence closure less often (once at the end?)

Pick which class name to keep when you merge

Cache “classof” lookup so that it’s fast

Core data structure is as described

Lay out data structures to be parallel, cache-friendly



Course Updates
Assignment 2



Assignment 2
Assignment 2 due on Thursday

Submit early so you’re not late
Check submission for any mistakes
Please put your name in file name; it helps grading

Lots of good questions on Piazza
→ How to encode KenKen into SAT
→ How fast to expect the SMT solution to be
→ Hints on how the bonus problem should work



Quantifier Heuristics
Where quantifiers can and can’t be useful



Quantified Equalities
Quantifiers convenient to express arithmetic laws:

∀x∀y, x + y = y + x
∀x∀y, (x + y) + z = x + (y + z)
∀x∀y, (x + y) − y = x

Can equivalence graphs use quantified equalities?



Instantiation
Quantified equality is infinitely-many equalities

But only some of them are relevant

Instantiate based on content of e-graph (model-based)

∀x∀y, x + y = y + x

+ × +

a b c

x y

+

Try both 
directions!y x

+



E-matching
Goal: find places a quantified equality matches

Loop over all e-classes1.
Find terms with matching function name2.
Recurse on arguments3.
Check variables bound identically4.

∀x, x − x = 0



Bottom-up Matching
E-matching wastes a lot of work

∀x, ∀y, ∀z, x + (y + z) = (x + y) + z

More efficient to match bottom-up
Combine all patterns from quantified equalities
Search for leaf nodes first, recording matching classes
Higher-level patterns refer to recorded matches

RETE algorithm combines patterns into state machine



Complexity

Commutativity grows the term database…

∀x∀y, x + y = y + x

∀x∀y, (x + y) + z = x + (y + z)

∀x∀y, f −1( f(x)) = x

Associativity grows the term database…

Inversion grows the term database…

linearly

exponentially

infinitely

((x + y) + (z + w)) + ((u + v) + (s + t))



To do: 
Course feedback 
Read Chapter 9 
Assignment 2

Integers
Next class:



Equality
Turning syntactic equality into pointer equality

Pointer sharing in tree structures

Solving equality queries with congruence closure
Rebuilding to ensure accuracy

Model-based quantifier instantiation
And why the heuristic doesn’t work in general



Equalities

Elimination

Substitution



Inequalities

Eliminating 
Variables



Speed

Linear 

Optimization



To do: 
Course feedback 
Read Chapter 9 
Assignment 2

Integers
Next class:


