Nelson-Oppen

Specifications section, Algorithms topic, Lecture 6

Pavel Panchekha

CS 6110, U of Utah 23 January 2020

First-order Logic

First-order logic is **common framework** for logics

$$p,q := \neg p \mid p \lor q \mid p \land q \mid \forall v,p \mid \exists v,p$$

Can add **domain-specific** constructs **Sorts, constants, functions, and relations** define the syntax **Interpretations** of each define the meaning **Axioms** allow proving first-order statements

Domains can be **mixed** to solve complex problems

Proofs

Proofs provide compact evidence for a first-order fact

$$\begin{bmatrix} A_1, A_2, \dots, A_n \end{bmatrix} \vdash \begin{bmatrix} p \\ Fact \end{bmatrix}$$

Quantifier rules for manipulating facts & axioms

 $\begin{array}{ccc} [\Gamma, x] A \vdash p & [\Gamma] A \vdash p[x := e] & [\Gamma, x] A \vdash p & [\Gamma] A[x := e] \vdash p \\ \hline \\ [\Gamma] A \vdash \forall x, p & [\Gamma] A \vdash \exists x, p & [\Gamma] \exists x, A \vdash p & [\Gamma] \forall x, A \vdash p \end{array}$

Replace identical expressions with boolean variables

Theories

Theory of **equality**: reflection and substitution Quantifier-free vs quantified formulas

Theory of **arithmetic**: induction and definitions Choosing subsets of the theory for easy solving

Theory of **arrays**: building one theory out of others Adding operators via definitions

Class Progress

Algorithms

Mixing Theories

Converting first-order problems to a **standard form** Combining conjunctive form, prefix form, and satisfiability

Separating problems across different theories

Assigning atomic clauses to theories

Interfacing between theories

Matching assumptions in different domains

Solver Architecture

A standard prover for first-order logic

The Goal

Impossible in general. Gödel, halting problem, etc...

Domain-specific reasoning is essential

Quantifiers instantiation difficult in general

Domains like integers have complex axiom schemas

Mosaic of **purpose-built fragments** to reason about

The Problems

Impossible in general. Gödel, halting problem, etc...

Domain-specific reasoning is essential

→ Embed domain-specific solvers

Quantifiers instantiation difficult in general

→ Restrict to quantifier-alternation-free statements

→ Custom algorithms for using those axioms

Mosaic of purpose-built fragments to reason about
→ Split single statement across available fragments

The Approach

What Next?

DPLL(T) Simplified domain solver queries

DPLL review

Algorithm finds **satisfying assignment** for boolean logic Maintains a set of **variable assignments**

Statement p $(\neg a_1 \lor a_2) \land (\neg b_1 \lor b_2) \land \dots$ Assignment Γ $a_1 \land \neg b_2 \land \dots$

Summary of the DPLL algorithm:

Extend Γ with **guessed or inferred** value until:

$$\begin{array}{lll} \Gamma \vdash p & \Gamma \vdash \neg p & \text{Can't extend } \Gamma \\ \textbf{SAT} & \textbf{BACKTRACK} & \textbf{UNSAT} \end{array}$$

DPLL with Theories

Want extension to first-order theories

DPLL with Theories

Want extension to first-order theories

 $\Gamma \text{ is impossible } x < 0 \land (x \times x = 0) \land \dots$

What to do in this case?

Means algorithm chose bad assignments

Analogous to $\Gamma \to \neg p \ \mathbf{case}$

 $\begin{array}{ll} \Gamma \vdash p & \neg \Gamma \text{ or } \Gamma \rightarrow \neg p & \text{Can't extend } \Gamma \\ \textbf{SAT} & \textbf{BACKTRACK} & \textbf{UNSAT} \end{array} \end{array}$

DPLL with Theories

- O. Put into conjunctive form, simplify
 - 1. If assignment impossible, backtrack
- 2. If statement true, **return assignment**
- 3. If statement false, **backtrack**
- 4. Pick an atomic clause, try assigning True
- 5. If it doesn't work, **try assigning False**

Building a Solver

DPLL(T) needs way to test if **assignment is possible**

Assignment: AND of atomic clauses

Simpler than testing if **statement** is possible

Splits automated prover into two components

DPLL: Boolean formula

Solver: Test assignment

Proving UNSAT

Assigning tasks to different solvers

 $\neg a[x + y := 5][y + x] < 6$

			G Assignment
Integer	\wedge	G =	F < A
Array	\wedge	F =	E [D]
Array	\wedge	E =	a[C := B]
Integer	\wedge	D =	y + x
Integer	\wedge	C =	x + y
Integer	\wedge	B =	5
Integer	\wedge	A =	6

		G Assignment
\wedge	Ε=	a[C $:=$ B $]$
Λ	F =	E [D]
Λ	G =	F < A
Λ	D =	y + x
\wedge	C =	x + y
^	B =	5
Λ	A =	6

		G Assignment
\wedge	Ε=	a[C $:=$ B $]$
Λ	F =	E [D]
Λ	G =	F < A
Λ	D =	y + x
\wedge	C =	x + y
^	B =	5
Λ	A =	6

-	¬ G
Λ	E = a[C := B]
Λ	F = E [D]
Λ	G = F < A
Λ	D = y + x
Λ	$\mathbf{C} = x + y$
Λ	B = 5
\wedge	A = 6

Course Updates

Assignment 2 Recitation

Assignment 2

Expect this to be **harder** than assignment 1 Start early, **ask questions** on Piazza or after class We hope for **fewer installation problems**

Recitation on Friday 13:00 MEB 3485

Will cover invoking Z3, its input and output format

Example of **solving equations** using Z3

Survey Comments

I've noticed **fewer students** filling out the survey That's why **it's mandatory**!

It helps me correcting misconceptions, improve lectures

Several comments on content being too theoretical

It would be helpful to see some examples of code I'm having a hard time connecting content to how Z3 works [It] will start to make more sense when we start implementing

Interface Clauses

Ensuring two theories play nice

Abstract Values

Generic data structures: values from another theory

How to represent values of **unknown sort**?

Only one valid operation: same or different

Arrays: abstract keys and abstract values

$$\begin{array}{c} ?1 \rightarrow ?2 \\ ?3 \rightarrow ?4 \\ \vdots \end{array}$$

Interface Clauses

Each sort, operation from **single theory** Only disagreement possible: **equal or disequal** Need consistent equality for **shared variables**

Interface Clauses

Each sort, operation from single theory

- Only disagreement possible: equal or disequal
- Need consistent equality for shared variables

Choose consistent assignment of interface clauses Truth values added to **both theories**, enforce consistency

Summary of Solvers

Next class: Equality

To do:
□ Course feedback
□ Read Chapter 9
□ Assignment 2

Mixing Theories

Converting first-order problems to a **standard form** Combining conjunctive form, prefix form, and satisfiability

Separating problems across different theories

Assigning atomic clauses to theories

Interfacing between theories

Matching assumptions in different domains

EQUALITY

TO IDENTITY

E-CLASSES

REPRESENTING RECURSIVE REPLACEMENT

REBUILDING

CREATING CONGRUENCE

CLOSURE

Next class: Equality

To do:
□ Course feedback
□ Read Chapter 9
□ Assignment 2