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First-order Logic
First-order logic is common framework for logics

p, q := ¬p ∣ p ∨ q ∣ p ∧ q ∣ ∀v, p ∣ ∃v, p

Can add domain-specific constructs
Sorts, constants, functions, and relations define the syntax
Interpretations of each define the meaning
Axioms allow proving first-order statements

Domains can be mixed to solve complex problems



Proofs
Proofs provide compact evidence for a first-order fact

p[ ] ⊢A1, A2, …, An
FactAxioms

Quantifier rules for manipulating facts & axioms

[Γ] A ⊢ ∀x, p
[Γ, x] A ⊢ p

[Γ] A ⊢ ∃x, p
[Γ] A ⊢ p[x := e]

[Γ] ∃x, A ⊢ p
[Γ, x] A ⊢ p

[Γ] ∀x, A ⊢ p
[Γ] A[x := e] ⊢ p

Replace identical expressions with boolean variables



Theories
Theory of equality: reflection and substitution

Theory of arrays: building one theory out of others

Theory of arithmetic: induction and definitions
Choosing subsets of the theory for easy solving

Quantifier-free vs quantified formulas

Adding operators via definitions



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

First-order Logic Decision Procedures

Mixing 
Theories Equality Integers Arrays



Algorithms

Math

Programs

∀x, ∀y, x × x = y → ∃k, ⋯

for i in l: recurse(v[i])



Mixing Theories
Converting first-order problems to a standard form

Combining conjunctive form, prefix form, and satisfiability

Separating problems across different theories
Assigning atomic clauses to theories

Interfacing between theories
Matching assumptions in different domains



Solver Architecture
A standard prover for first-order logic



The Goal

First-order 
statement 

p

Proof of p

Proof of ¬p
or

Impossible in general. Gödel, halting problem, etc…
Domain-specific reasoning is essential

Domains like integers have complex axiom schemas

Mosaic of purpose-built fragments to reason about

Quantifiers instantiation difficult in general



The Problems
Impossible in general. Gödel, halting problem, etc…

Domain-specific reasoning is essential

Domains like integers have complex axiom schemas

Mosaic of purpose-built fragments to reason about

Quantifiers instantiation difficult in general

→ Embed domain-specific solvers

→ Restrict to quantifier-alternation-free statements

→ Custom algorithms for using those axioms

→ Split single statement across available fragments



The Approach

First-order 
statement 

∀∃p

Proof of ∀∃p

Proof of ¬∀∃p
or

Standard 
Form p′ 

Proofs of 
q1, q2, q3

Domain solvers 
q1 ∧ q2 ∧ q3



Prefix form

Standard Query Form
∀x, (∃y, P(x, y)) ∧ (∀z, R(x, z) → Q(x))

∀x, ∃y, ∃z, P(x, y) ∧ (R(x, z) → Q(x))

∀x, ∃y, ∃z, p
Heuristics

∀x, p[y := e1, z := e2]

∀x, ∀y, ∀z, p
Opposite

∃x, ∃y, ∃z, ¬p

∃x, ∃y, ∃z, p

Standard 
Form

Satisfying 
assignment for p



What Next?
∃x, ∃y, ∃z, pp

(a1 ∨ ¬a2) ∧ (¬b1 ∨ ⋯) ∧ ⋯)Conjunctive Form

a1 ∧ a2 ∧ ¬b1 ∧ ⋯Literal Assignment

a1 ∧ ¬b1 ∧ ⋯ a2 ∧ ⋯

Solver A Solver B

DPLL(T)

Nelson-Oppen

Standard 
Form



DPLL(T)
Simplified domain solver queries



DPLL review
Algorithm finds satisfying assignment for boolean logic

Maintains a set of variable assignments

Statement p Assignment Γ

 
SAT
Γ ⊢ p Can’t extend  

UNSAT
Γ 

BACKTRACK
Γ ⊢ ¬p

(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ … a1 ∧ ¬b2 ∧ …

Summary of the DPLL algorithm:

Extend  with guessed or inferred value until:Γ



 is impossibleΓ

DPLL with Theories
Want extension to first-order theories

The  are literals from the theoryai, bi, …

(¬(x < 0) ∨ (x × x > 0)) ∧ (¬(x = 0) ∨ (x × x = 0) ∧ …

x < 0 ∧ (x × x = 0) ∧ …

Statement p Assignment Γ
(¬a1 ∨ a2) ∧ (¬b1 ∨ b2) ∧ … a1 ∧ ¬b2 ∧ …

a1 a2 b1 b2

a1 b2



 is impossibleΓ

DPLL with Theories
Want extension to first-order theories

x < 0 ∧ (x × x = 0) ∧ …

What to do in this case?
Means algorithm chose bad assignments

Analogous to  caseΓ → ¬p

 or  
BACKTRACK
¬Γ Γ → ¬p 

SAT
Γ ⊢ p Can’t extend  

UNSAT
Γ



DPLL with Theories

If assignment impossible, backtrack1.
If statement true, return assignment2.

Pick an atomic clause, try assigning True4.
If it doesn’t work, try assigning False5.

If statement false, backtrack3.

Put into conjunctive form, simplify0.



Building a Solver
DPLL(T) needs way to test if assignment is possible

Assignment: AND of atomic clauses

Simpler than testing if statement is possible

Splits automated prover into two components

Solver: Test assignment

DPLL: Boolean formula



Proving UNSAT
Assigning tasks to different solvers



a[ := ][ ] <

Standard Form
x + y y + x5 6¬



Conjunctive form

One operation

Standard Form

x + y
y + x

a[ := ]
[ ]

5
6

<

A =

B =

C =

D =

E =

F =

G = A

BC

DE

F

G

∧

∧

∧

∧

∧

∧

∧

Integer

Array

Array

Integer

Integer

Integer

Integer

¬



Assignment

Standard Form

<G = AF∧

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

G

Integer

Array

Array

Integer

Integer

Integer

Integer

¬



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

AssignmentG¬



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

AssignmentG¬



Standard Form
G

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

¬



Standard Form
G

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

Send to Array solver

Send to Integer solver

If either UNSAT, 
original impossible

¬



Course Updates
Assignment 2 Recitation



Assignment 2
Expect this to be harder than assignment 1

Start early, ask questions on Piazza or after class

We hope for fewer installation problems

Recitation on Friday 13:00 MEB 3485
Will cover invoking Z3, its input and output format

Example of solving equations using Z3



Survey Comments
I’ve noticed fewer students filling out the survey

That’s why it’s mandatory!

It helps me correcting misconceptions, improve lectures

It would be helpful to see some examples of code
I'm having a hard time connecting content to how Z3 works
[It] will start to make more sense when we start implementing

Several comments on content being too theoretical



Interface Clauses
Ensuring two theories play nice



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

a B C D E F

? ? ? ? ? ?

How to represent integer values?

G¬



Abstract Values
Generic data structures: values from another theory

How to represent values of unknown sort?

Only one valid operation: same or different

Arrays: abstract keys and abstract values

?1 → ?2

?3 → ?4


⋮



Keys, values represented abstractly

Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?3 ?1 → ?5


?3 → ?4 ?4

G¬



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 3

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?3 ?1 → ?5


?3 → ?4 ?4

C = D? Theories disagree

G¬



Array Integer

Interface Clauses
Each sort, operation from single theory

Only disagreement possible: equal or disequal

Need consistent equality for shared variables

B

C

D

F
a

E
x

y

A



Interface Clauses
Each sort, operation from single theory

Only disagreement possible: equal or disequal

Need consistent equality for shared variables

B

C

D

F

Interface Clauses
B = C 
B = D 
B = F

C = D 
C = F 
D = F

B ≠ C ∨ C ≠ D ∨ B = D

Consistency

B ≠ C ∨ C ≠ F ∨ B = F
⋮

Choose consistent assignment of interface clauses
Truth values added to both theories, enforce consistency



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 3

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?3 ?1 → ?5


?3 → ?4 ?4

C = D? Theories disagree

Choose C = DG¬



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

C = D∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?3 ?1 → ?5


?3 → ?4 ?4
C = D∧

a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?1 ?1 → ?5


?3 → ?4 ?5

B = F? Theories disagree

Choose B = FG¬ ∧ C = D



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

C = D∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

C = D∧
a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?1 ?1 → ?5


?3 → ?4 ?5
B = F∧

B = F∧

UNSAT

Ok, try B ≠ FG¬ ∧ C = D B = F∧



Standard Form
G

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

C = D∧

¬

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

C = D∧
a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?1 ?1 → ?5


?3 → ?4 ?5
B ≠ F∧

B ≠ F∧

UNSAT

Ok, try C ≠ D

UNSAT

∧ C = D B ≠ F∧



Standard Form

[ ]F = DE∧

a[ := ]E = BC∧

y + xD =∧

x + yC =∧

5B =∧

6A =∧

<G = AF∧

C ≠ D∧

SAT

SAT

x y A B C D F

0 0 6 5 0 0 7

C ≠ D∧
a B C D E F

?1 → ?2

?3 → ?4 ?5 ?1 ?1 ?1 → ?5


?3 → ?4 ?5

UNSAT

Ok, UNSAT

UNSAT

G¬ ∧ C ≠ D



Summary of Solvers
∃x, ∃y, ∃z, pp

(a1 ∨ ¬a2) ∧ (¬b1 ∨ ⋯) ∧ ⋯)Conjunctive Form

a1 ∧ a2 ∧ ¬b1 ∧ ⋯Literal Assignment

a1 ∧ ¬b1 ∧ ⋯ a2 ∧ ⋯

Solver A Solver B

DPLL(T)

Nelson-Oppen

Standard 
Form

Interface 
Clauses

Interface 
Clauses



To do: 
Course feedback 
Read Chapter 9 
Assignment 2

Equality
Next class:



Mixing Theories
Converting first-order problems to a standard form

Combining conjunctive form, prefix form, and satisfiability

Separating problems across different theories
Assigning atomic clauses to theories

Interfacing between theories
Matching assumptions in different domains



Hashing

Equality

To Identity



E-Classes

Representing 
Recursive 

Replacement



Rebuilding

Creating 
Congruence 

Closure



To do: 
Course feedback 
Read Chapter 9 
Assignment 2

Equality
Next class:


